Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
J Adv Res. 2024 Oct;64:117-129. doi: 10.1016/j.jare.2023.11.024. Epub 2023 Nov 22.
Bivalve molluscs are abundant in marine and freshwater systems and contribute essential ecosystem services. They are characterized by an exuberant diversity of biomineralized shells and typically have two symmetric valves (a.k.a shells), but oysters (Ostreidae), some clams (Anomiidae and Chamidae) and scallops (Pectinida) have two asymmetrical valves. Predicting and modelling the likely consequences of ocean acidification on bivalve survival, biodiversity and aquaculture makes understanding shell biomineralization and its regulation a priority.
This study aimed to a) exploit the atypical asymmetric shell growth of some bivalves and through comparative analysis of the genome and transcriptome pinpoint candidate biomineralization-related genes and regulatory long non-coding RNAs (LncRNAs) and b) demonstrate their roles in regulating shell biomineralization/growth.
Meta-analysis of genomes, de novo generated mantle transcriptomes or transcriptomes and proteomes from public databases for six asymmetric to symmetric bivalve species was used to identify biomineralization-related genes. Bioinformatics filtering uncovered genes and regulatory modules characteristic of bivalves with asymmetric shells and identified candidate biomineralization-related genes and lncRNAs with a biased expression in asymmetric valves. A shell regrowth model in oyster and gene silencing experiments, were used to characterize candidate gene function.
Shell matrix genes with asymmetric expression in the mantle of the two valves were identified and unique cis-regulatory lncRNA modules characterized in Ostreidae. LncRNAs that regulate the expression of the tissue inhibitor of metalloproteinases gene family (TIMPDR) and of the shell matrix protein domain family (SMPDR) were identified. In vitro and in vivo silencing experiments revealed the candidate genes and lncRNA were associated with divergent shell growth rates and modified the microstructure of calcium carbonate (CaCO) crystals.
LncRNAs are putative regulatory factors of the bivalve biomineralization toolbox. In the Ostreidae family of bivalves biomineralization-related genes are cis-regulated by lncRNA and modify the planar growth rate and spatial orientation of crystals in the shell.
双壳类软体动物在海洋和淡水系统中丰富多样,对生态系统服务至关重要。它们的特征是生物矿化壳的多样性非常丰富,通常具有两个对称的瓣(也称为壳),但牡蛎(牡蛎科)、一些蛤(Anomiidae 和 Chamidae)和扇贝(扇贝科)具有两个不对称的瓣。预测和模拟海洋酸化对双壳类动物生存、生物多样性和水产养殖的可能影响,使得理解壳生物矿化及其调控成为当务之急。
本研究旨在:a)利用一些双壳类动物非典型的不对称壳生长,通过对基因组和转录组的比较分析,确定候选生物矿化相关基因和调控长非编码 RNA(lncRNA);b)证明它们在调节壳生物矿化/生长中的作用。
利用六个不对称至对称双壳类物种的基因组、从头生成的套膜转录组或公共数据库中的转录组和蛋白质组的元分析,鉴定生物矿化相关基因。生物信息学过滤揭示了具有不对称壳的双壳类动物的特征基因和调控模块,并鉴定了具有不对称瓣偏表达的候选生物矿化相关基因和 lncRNA。在牡蛎中进行壳再生模型和基因沉默实验,以表征候选基因的功能。
鉴定了在两个瓣套膜中具有不对称表达的壳基质基因,并在牡蛎科中鉴定了独特的顺式调控 lncRNA 模块。鉴定了调节组织金属蛋白酶抑制剂基因家族(TIMPDR)和壳基质蛋白域家族(SMPDR)表达的 lncRNA。体外和体内基因沉默实验表明,候选基因和 lncRNA 与不同的壳生长速率相关,并改变了碳酸钙(CaCO3)晶体的微观结构。
lncRNA 是双壳类生物矿化工具箱的潜在调节因子。在牡蛎科双壳类动物中,生物矿化相关基因受 lncRNA 的顺式调控,改变了壳中晶体的平面生长速率和空间取向。