Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
Nat Protoc. 2024 Jan;19(1):60-82. doi: 10.1038/s41596-023-00903-x. Epub 2023 Nov 23.
Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.
大多数晚期恶性肿瘤患者接受的是毒性很强的一线化疗药物治疗。个性化治疗策略已改善了患者的预后,并且可能取代一刀切的治疗方法,但需要通过在原发性患者细胞中测试一系列靶向药物来进行个体化治疗。大多数功能性精准医学研究使用简单的药物反应指标,这些指标无法量化药物的选择性效应(即癌细胞和正常细胞的差异反应)。我们开发了一种用于选择性药物敏感性评分(DSS)的计算方法,该方法能够针对正常细胞的反应对个体患者的反应进行归一化。选择性反应评分使用非癌细胞的抑制作用作为潜在药物毒性的替代指标,这反过来又可以用于确定有效且更安全的治疗选择。在这里,我们解释了如何应用选择性 DSS 计算方法来指导欧洲和美国三个癌症中心治疗的白血病患者的精准医学;通用方法也广泛适用于其他可进行药物测试的恶性肿瘤。开源且可扩展的 R 代码为根据真实世界和临床试验环境中患者日益可用的体外药物测试数据制定个性化治疗策略提供了一种强大的手段。我们还提供了 527 种抗癌化合物在 10 个健康骨髓样本中的药物反应谱,作为选择性评分和优先排序具有广泛毒性作用药物的参考数据。该过程耗时不到 60 分钟,并且需要 R 语言的基本技能。