Suppr超能文献

人群层面的痴呆症初级预防干预措施:一项复杂的证据综述。

Population-level interventions for the primary prevention of dementia: a complex evidence review.

机构信息

Cambridge Public Health, University of Cambridge, Cambridge, UK.

Cambridge Public Health, University of Cambridge, Cambridge, UK.

出版信息

Lancet. 2023 Nov;402 Suppl 1:S13. doi: 10.1016/S0140-6736(23)02068-8.

Abstract

BACKGROUND

Dementia is a leading, global public health challenge. Recent evidence supporting a decrease in age-specific incidence of dementia in high-income countries (HICs) suggests that risk reduction is possible through improved life-course public health. Despite this, efforts to date have been heavily focused on individual-level approaches, which are unlikely to significantly reduce dementia prevalence or inequalities in dementia. In order to inform policy, we identified the population-level interventions for dementia risk reduction with the strongest evidence base.

METHODS

We did this complex, multistage, evidence review to summarise the empirical, interventional evidence for population-level interventions to reduce or control each of the 12 modifiable life-course risk factors for dementia identified by the Lancet commission. We conducted a series of structured searches of peer-reviewed and grey literature databases (eg, Medline, Trip database, Cochrane library, Campbell Collaboration, the WHO, and Google Scholar), in January, March, and June, 2023. Search terms related to risk factors, prevention, and population-level interventions, without language restrictions. We extracted evidence of effectiveness and key contextual information to aid consideration and implementation of interventions by policymakers. We performed a narrative synthesis and evidence grading, and we derived a population-level dementia risk reduction intervention framework, structured by intervention type. This study is registered with PROSPERO, ID:CRD42023396193.

FINDINGS

We identified clear and consistent evidence for the effectiveness of 26 population-level interventions to reduce the prevalence of nine of the risk factors, of which 23 have been empirically evaluated in HICs, and 16 in low-income and middle-income countries. We identified interventions that acted through fiscal levers (n=5; eg, removing primary school fees), marketing or advertising levers (n=5; eg, plain packaging of tobacco products), availability levers (n=8; eg, cleaner fuel replacement programmes for cooking stoves), and legislative levers (n=8; eg, mandated provision of hearing protective equipment at noisy workplaces). We were not able to recommend any interventions for diabetes (other than indirectly through action on obesity and physical inactivity), depression, or social isolation.

INTERPRETATION

This complex evidence review provides policymakers and public health professionals with an evidence-based framework to help develop and implement population-level approaches for dementia risk reduction that could significantly reduce the population's risk of dementia and reduce health inequalities.

FUNDING

None.

摘要

背景

痴呆症是一个主要的、全球性的公共卫生挑战。最近有证据表明,高收入国家(HICs)的特定年龄组痴呆症发病率有所下降,这表明通过改善整个生命过程中的公共卫生措施,降低风险是有可能的。尽管如此,迄今为止的努力主要集中在个人层面的方法上,而这些方法不太可能显著降低痴呆症的患病率或痴呆症的不平等。为了为政策提供信息,我们确定了具有最强证据基础的降低痴呆症风险的人群干预措施。

方法

我们进行了这项复杂的、多阶段的证据综述,以总结针对 12 种可改变的生命过程风险因素中的每一种降低或控制的人群干预措施的经验性干预证据,这些风险因素是由柳叶刀委员会确定的。我们于 2023 年 1 月、3 月和 6 月在同行评议和灰色文献数据库(如 Medline、Trip 数据库、Cochrane 图书馆、坎贝尔合作组织、世界卫生组织和谷歌学术)中进行了一系列结构化搜索,没有语言限制。我们提取了有效性证据和关键背景信息,以帮助政策制定者考虑和实施干预措施。我们进行了叙述性综合和证据分级,并制定了一个基于干预类型的人群痴呆症风险降低干预框架。本研究已在 PROSPERO 注册,编号为 CRD42023396193。

发现

我们发现有明确和一致的证据表明,26 种人群干预措施可有效降低 9 种风险因素的患病率,其中 23 种已在 HIC 中进行了实证评估,16 种在低收入和中等收入国家进行了评估。我们确定了通过财政杠杆(n=5;例如,取消小学学费)、营销或广告杠杆(n=5;例如,烟草产品的素面包装)、可用性杠杆(n=8;例如,清洁燃料替代炉灶的烹饪燃料)和立法杠杆(n=8;例如,在嘈杂的工作场所强制提供听力保护设备)实施的干预措施。我们无法推荐任何针对糖尿病(除了通过对肥胖和身体活动不足的间接作用)、抑郁症或社会隔离的干预措施。

解释

这项复杂的证据综述为政策制定者和公共卫生专业人员提供了一个基于证据的框架,以帮助制定和实施降低痴呆症风险的人群方法,这可能会显著降低人群患痴呆症的风险,并减少健康不平等。

资金

无。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验