Jin Peng-Bo, Luo Qian-Cheng, Gransbury Gemma K, Vitorica-Yrezabal Iñigo J, Hajdu Tomáš, Strashnov Ilya, McInnes Eric J L, Winpenny Richard E P, Chilton Nicholas F, Mills David P, Zheng Yan-Zhen
Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China.
Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
J Am Chem Soc. 2023 Dec 27;145(51):27993-28009. doi: 10.1021/jacs.3c07978. Epub 2023 Nov 24.
The thermostable four-coordinate divalent lanthanide (Ln) bis-amidinate complexes [Ln(Piso)] (Ln = Tb, Dy; Piso = {(NDipp)CBu}, Dipp = CHPr-2,6) were prepared by the reduction of parent five-coordinate Ln(III) precursors [Ln(Piso)I] (Ln = Tb, Dy) with KC; halide abstraction of [Ln(Piso)I] with [H(SiEt)][B(CF)] gave the respective Ln(III) complexes [Ln(Piso)][B(CF)]. All complexes were characterized by X-ray diffraction, ICP-MS, elemental analysis, SQUID magnetometry, UV-vis-NIR, ATR-IR, NMR, and EPR spectroscopy and CASSCF-SO calculations. These data consistently show that [Ln(Piso)] formally exhibit Ln(II) centers with 4f5d (Ln = Tb, = 8; Dy, = 9) valence electron configurations. We show that simple assignments of the f-d coupling to either - or - schemes are an oversimplification, especially in the presence of significant crystal field splitting. The coordination geometry of [Ln(Piso)] is intermediate between square planar and tetrahedral. Projecting from the quaternary carbon atoms of the CN ligand backbones shows near-linear C···Ln···C arrangements. This results in strong axial ligand fields to give effective energy barriers to magnetic reversal of 1920(91) K for the Tb(II) analogue and 1964(48) K for Dy(II), the highest values observed for mononuclear Ln(II) single-molecule magnets, eclipsing 1738 K for [Tb(CPr)]. We tentatively attribute the fast zero-field magnetic relaxation for these complexes at low temperatures to transverse fields, resulting in considerable mixing of states.
通过用KC还原母体五配位Ln(III)前体[Ln(Piso)I](Ln = Tb,Dy;Piso = {(NDipp)CBu},Dipp = CHPr-2,6)制备了热稳定的四配位二价镧系(Ln)双脒基配合物[Ln(Piso)];用[H(SiEt)][B(CF)]对[Ln(Piso)I]进行卤化物萃取得到相应的Ln(III)配合物[Ln(Piso)][B(CF)]。所有配合物均通过X射线衍射、电感耦合等离子体质谱、元素分析、超导量子干涉仪磁力测定、紫外-可见-近红外光谱、衰减全反射红外光谱、核磁共振和电子顺磁共振光谱以及完全活性空间自洽场-自旋轨道(CASSCF-SO)计算进行了表征。这些数据一致表明,[Ln(Piso)]形式上表现出具有4f⁵d(Ln = Tb,S = 8;Dy,S = 9)价电子构型的Ln(II)中心。我们表明,将f-d耦合简单地归为-或-方案是一种过度简化,特别是在存在显著晶体场分裂的情况下。[Ln(Piso)]的配位几何结构介于平面正方形和四面体之间。从CN配体主链的季碳原子投影显示出近乎线性的C···Ln···C排列。这导致了强轴向配体场,对于Tb(II)类似物,产生了1920(91) K的有效磁反转能垒,对于Dy(II)为1964(48) K,这是单核Ln(II)单分子磁体中观察到的最高值,超过了[Tb(CPr)]的1738 K。我们初步将这些配合物在低温下的快速零场磁弛豫归因于横向场,导致态的大量混合。