Suppr超能文献

用于光学相干断层扫描降噪的领域感知少样本学习

Domain-Aware Few-Shot Learning for Optical Coherence Tomography Noise Reduction.

作者信息

Pereg Deborah

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

J Imaging. 2023 Oct 30;9(11):237. doi: 10.3390/jimaging9110237.

Abstract

Speckle noise has long been an extensively studied problem in medical imaging. In recent years, there have been significant advances in leveraging deep learning methods for noise reduction. Nevertheless, adaptation of supervised learning models to unseen domains remains a challenging problem. Specifically, deep neural networks (DNNs) trained for computational imaging tasks are vulnerable to changes in the acquisition system's physical parameters, such as: sampling space, resolution, and contrast. Even within the same acquisition system, performance degrades across datasets of different biological tissues. In this work, we propose a few-shot supervised learning framework for optical coherence tomography (OCT) noise reduction, that offers high-speed training (of the order of seconds) and requires only a single image, or part of an image, and a corresponding speckle-suppressed ground truth, for training. Furthermore, we formulate the domain shift problem for OCT diverse imaging systems and prove that the output resolution of a despeckling trained model is determined by the source domain resolution. We also provide possible remedies. We propose different practical implementations of our approach, verify and compare their applicability, robustness, and computational efficiency. Our results demonstrate the potential to improve sample complexity, generalization, and time efficiency, for coherent and non-coherent noise reduction via supervised learning models, that can also be leveraged for other real-time computer vision applications.

摘要

散斑噪声长期以来一直是医学成像中一个被广泛研究的问题。近年来,在利用深度学习方法进行降噪方面取得了重大进展。然而,将监督学习模型应用于未见领域仍然是一个具有挑战性的问题。具体而言,为计算成像任务训练的深度神经网络(DNN)容易受到采集系统物理参数变化的影响,例如:采样空间、分辨率和对比度。即使在同一采集系统内,不同生物组织数据集的性能也会下降。在这项工作中,我们提出了一种用于光学相干断层扫描(OCT)降噪的少样本监督学习框架,该框架提供高速训练(秒级),并且仅需要单个图像或图像的一部分以及相应的散斑抑制后的真实图像用于训练。此外,我们针对OCT不同成像系统阐述了域偏移问题,并证明去噪训练模型的输出分辨率由源域分辨率决定。我们还提供了可能的补救措施。我们提出了该方法的不同实际实现方式,验证并比较了它们的适用性、鲁棒性和计算效率。我们的结果表明,通过监督学习模型进行相干和非相干降噪,有潜力提高样本复杂度、泛化能力和时间效率,这也可用于其他实时计算机视觉应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6029/10672362/8d0692e6fa0e/jimaging-09-00237-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验