Suppr超能文献

用于低信噪比频域光学相干断层扫描域变换的自监督模型驱动深度学习

Self-supervised model-informed deep learning for low-SNR SS-OCT domain transformation.

作者信息

Rakhshani Sajed, Arbab Amirali, Habibi Aref, Pourazizi Mohsen, Tajmirriahi Mahnoosh, Sedighin Farnaz, Rabbani Hossein

机构信息

Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.

出版信息

Sci Rep. 2025 May 22;15(1):17791. doi: 10.1038/s41598-025-02375-3.

Abstract

This article introduces a novel deep-learning based framework, Super-resolution/Denoising network (SDNet), for simultaneous denoising and super-resolution of swept-source optical coherence tomography (SS-OCT) images. The novelty of this work lies in the hybrid integration of data-driven deep-learning with a model-informed noise representation, specifically designed to address the very low signal-to-noise ratio (SNR) and low-resolution challenges in SS-OCT imaging. SDNet introduces a two-step training process, leveraging noise-free OCT references to simulate low-SNR conditions. In the first step, the network learns to enhance noisy images by combining denoising and super-resolution within noise-corrupted reference domain. To refine its performance, the second step incorporates Principle Component Analysis (PCA) as self-supervised denoising strategy, eliminating the need for ground-truth noisy image data. This unique approach enhances SDNet's adaptability and clinical relevance. A key advantage of SDNet is its ability to balance contrast-texture by adjusting the weights of the two training steps, offering clinicians flexibility for specific diagnostic needs. Experimental results across diverse datasets demonstrate that SDNet surpasses traditional model-based and data-driven methods in computational efficiency, noise reduction, and structural fidelity. The framework excels in improving both image quality and diagnostic accuracy. Additionally, SDNet shows promising adaptability for analyzing low-resolution, low-SNR OCT images, such as those from patients with diabetic macular edema (DME). This study establishes SDNet as a robust, efficient, and clinically adaptable solution for OCT image enhancement addressing critical limitations in contemporary imaging workflows.

摘要

本文介绍了一种基于深度学习的新型框架——超分辨率/去噪网络(SDNet),用于同时对扫频源光学相干断层扫描(SS-OCT)图像进行去噪和超分辨率处理。这项工作的新颖之处在于将数据驱动的深度学习与模型 informed 噪声表示进行混合集成,专门设计用于解决 SS-OCT 成像中极低的信噪比(SNR)和低分辨率挑战。SDNet 引入了一个两步训练过程,利用无噪声的 OCT 参考来模拟低 SNR 条件。在第一步中,网络学习通过在噪声破坏的参考域内结合去噪和超分辨率来增强噪声图像。为了优化其性能,第二步将主成分分析(PCA)作为自监督去噪策略,从而无需真实的噪声图像数据。这种独特的方法增强了 SDNet 的适应性和临床相关性。SDNet 的一个关键优势在于它能够通过调整两个训练步骤的权重来平衡对比度纹理,为临床医生提供满足特定诊断需求的灵活性。在不同数据集上的实验结果表明,SDNet 在计算效率、降噪和结构保真度方面优于传统的基于模型和数据驱动的方法。该框架在提高图像质量和诊断准确性方面表现出色。此外,SDNet 在分析低分辨率、低 SNR 的 OCT 图像(如糖尿病性黄斑水肿(DME)患者的图像)方面显示出有前景的适应性。这项研究将 SDNet 确立为一种强大、高效且临床适用的 OCT 图像增强解决方案,解决了当代成像工作流程中的关键限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceb2/12098743/2a25758fac05/41598_2025_2375_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验