Suppr超能文献

针对已诊断为转移性皮肤黑色素瘤患者的精准医学领域中人工智能的最新进展

Recent Advances in the Field of Artificial Intelligence for Precision Medicine in Patients with a Diagnosis of Metastatic Cutaneous Melanoma.

作者信息

Higgins Hayley, Nakhla Abanoub, Lotfalla Andrew, Khalil David, Doshi Parth, Thakkar Vandan, Shirini Dorsa, Bebawy Maria, Ammari Samy, Lopci Egesta, Schwartz Lawrence H, Postow Michael, Dercle Laurent

机构信息

Department of Clinical Medicine, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA.

Department of Clinical Medicine, American University of the Caribbean School of Medicine, 33027 Cupecoy, Sint Maarten, The Netherlands.

出版信息

Diagnostics (Basel). 2023 Nov 20;13(22):3483. doi: 10.3390/diagnostics13223483.

Abstract

Standard-of-care medical imaging techniques such as CT, MRI, and PET play a critical role in managing patients diagnosed with metastatic cutaneous melanoma. Advancements in artificial intelligence (AI) techniques, such as radiomics, machine learning, and deep learning, could revolutionize the use of medical imaging by enhancing individualized image-guided precision medicine approaches. In the present article, we will decipher how AI/radiomics could mine information from medical images, such as tumor volume, heterogeneity, and shape, to provide insights into cancer biology that can be leveraged by clinicians to improve patient care both in the clinic and in clinical trials. More specifically, we will detail the potential role of AI in enhancing detection/diagnosis, staging, treatment planning, treatment delivery, response assessment, treatment toxicity assessment, and monitoring of patients diagnosed with metastatic cutaneous melanoma. Finally, we will explore how these proof-of-concept results can be translated from bench to bedside by describing how the implementation of AI techniques can be standardized for routine adoption in clinical settings worldwide to predict outcomes with great accuracy, reproducibility, and generalizability in patients diagnosed with metastatic cutaneous melanoma.

摘要

标准治疗医学成像技术,如CT、MRI和PET,在管理被诊断为转移性皮肤黑色素瘤的患者方面发挥着关键作用。人工智能(AI)技术的进步,如放射组学、机器学习和深度学习,可能会通过增强个性化图像引导的精准医学方法,彻底改变医学成像的应用。在本文中,我们将解读AI/放射组学如何从医学图像中挖掘信息,如肿瘤体积、异质性和形状,以提供对癌症生物学的见解,临床医生可利用这些见解在临床和临床试验中改善患者护理。更具体地说,我们将详细阐述AI在增强检测/诊断、分期、治疗计划、治疗实施、反应评估、治疗毒性评估以及监测被诊断为转移性皮肤黑色素瘤患者方面的潜在作用。最后,我们将探讨如何通过描述AI技术的实施如何在全球临床环境中标准化以便常规采用,从而将这些概念验证结果从实验室转化到床边,以在被诊断为转移性皮肤黑色素瘤的患者中以高度准确性、可重复性和通用性预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dca/10670510/c7833a665568/diagnostics-13-03483-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验