Computer Engineering Department, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, 1029, Egypt.
Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt.
Phys Eng Sci Med. 2024 Mar;47(1):153-168. doi: 10.1007/s13246-023-01352-2. Epub 2023 Nov 24.
Cardiac image segmentation is a critical step in the early detection of cardiovascular disease. The segmentation of the biventricular is a prerequisite for evaluating cardiac function in cardiac magnetic resonance imaging (CMRI). In this paper, a cascaded model CAT-Seg is proposed for segmentation of 3D-CMRI volumes. CAT-Seg addresses the problem of biventricular confusion with other regions and localized the region of interest (ROI) to reduce the scope of processing. A modified DeepLabv3+ variant integrating SqueezeNet (SqueezeDeepLabv3+) is proposed as a part of CAT-Seg. SqueezeDeepLabv3+ handles the different shapes of the biventricular through the different cardiac phases, as the biventricular only accounts for small portion of the volume slices. Also, CAT-Seg presents a segmentation approach that integrates attention mechanisms into 3D Residual UNet architecture (3D-ResUNet) called 3D-ARU to improve the segmentation results of the three major structures (left ventricle (LV), Myocardium (Myo), and right ventricle (RV)). The integration of the spatial attention mechanism into ResUNet handles the fuzzy edges of the three structures. The proposed model achieves promising results in training and testing with the Automatic Cardiac Diagnosis Challenge (ACDC 2017) dataset and the external validation using MyoPs. CAT-Seg demonstrates competitive performance with state-of-the-art models. On ACDC 2017, CAT-Seg is able to segment LV, Myo, and RV with an average minimum dice symmetry coefficient (DSC) performance gap of 1.165%, 4.36%, and 3.115% respectively. The average maximum improvement in terms of DSC in segmenting LV, Myo and RV is 4.395%, 6.84% and 7.315% respectively. On MyoPs external validation, CAT-Seg outperformed the state-of-the-art in segmenting LV, Myo, and RV with an average minimum performance gap of 6.13%, 5.44%, and 2.912% respectively.
心脏图像分割是早期心血管疾病检测的关键步骤。双心室的分割是心脏磁共振成像(CMRI)评估心脏功能的前提。本文提出了一种级联模型 CAT-Seg 用于分割 3D-CMRI 体数据。CAT-Seg 解决了双心室与其他区域混淆的问题,并将感兴趣区域(ROI)定位以减少处理范围。作为 CAT-Seg 的一部分,提出了一种集成 SqueezeNet(SqueezeDeepLabv3+)的修改后的 DeepLabv3+变体。SqueezeDeepLabv3+通过不同的心脏相位处理双心室的不同形状,因为双心室仅占体积切片的一小部分。此外,CAT-Seg 提出了一种分割方法,将注意力机制集成到 3D Residual UNet 架构(3D-ResUNet)中,称为 3D-ARU,以提高三个主要结构(左心室(LV)、心肌(Myo)和右心室(RV)的分割结果。将空间注意力机制集成到 ResUNet 中处理了三个结构的模糊边缘。该模型在使用自动心脏诊断挑战赛(ACDC 2017)数据集进行训练和测试以及使用 MyoPs 进行外部验证时取得了有希望的结果。CAT-Seg 在性能上与最先进的模型具有竞争力。在 ACDC 2017 上,CAT-Seg 能够以平均最小骰子对称系数(DSC)性能差距 1.165%、4.36%和 3.115%分别分割 LV、Myo 和 RV。在分割 LV、Myo 和 RV 方面,DSC 的平均最大改进分别为 4.395%、6.84%和 7.315%。在 MyoPs 外部验证中,CAT-Seg 在分割 LV、Myo 和 RV 方面的表现优于最先进的方法,平均最小性能差距分别为 6.13%、5.44%和 2.912%。