Ivanova Elena, Fayzullin Alexey, Grinin Victor, Ermilov Dmitry, Arutyunyan Alexander, Timashev Peter, Shekhter Anatoly
Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia.
B. V. Petrovsky Russian Research Center of Surgery, 2 Abrikosovskiy Lane, Moscow 119991, Russia.
Biomedicines. 2023 Oct 24;11(11):2875. doi: 10.3390/biomedicines11112875.
Renal cell carcinoma is a significant health burden worldwide, necessitating accurate and efficient diagnostic methods to guide treatment decisions. Traditional pathology practices have limitations, including interobserver variability and time-consuming evaluations. In recent years, digital pathology tools emerged as a promising solution to enhance the diagnosis and management of renal cancer. This review aims to provide a comprehensive overview of the current state and potential of digital pathology in the context of renal cell carcinoma. Through advanced image analysis algorithms, artificial intelligence (AI) technologies facilitate quantification of cellular and molecular markers, leading to improved accuracy and reproducibility in renal cancer diagnosis. Digital pathology platforms empower remote collaboration between pathologists and help with the creation of comprehensive databases for further research and machine learning applications. The integration of digital pathology tools with other diagnostic modalities, such as radiology and genomics, enables a novel multimodal characterization of different types of renal cell carcinoma. With continuous advancements and refinement, AI technologies are expected to play an integral role in diagnostics and clinical decision-making, improving patient outcomes. In this article, we explored the digital pathology instruments available for clear cell, papillary and chromophobe renal cancers from pathologist and data analyst perspectives.
肾细胞癌是全球范围内一项重大的健康负担,因此需要准确且高效的诊断方法来指导治疗决策。传统病理学实践存在局限性,包括观察者间的差异以及耗时的评估。近年来,数字病理学工具作为一种有前景的解决方案出现,可用于加强肾癌的诊断与管理。本综述旨在全面概述数字病理学在肾细胞癌背景下的现状与潜力。通过先进的图像分析算法,人工智能(AI)技术有助于对细胞和分子标志物进行量化,从而提高肾癌诊断的准确性和可重复性。数字病理学平台使病理学家之间能够进行远程协作,并有助于创建综合数据库以用于进一步研究和机器学习应用。将数字病理学工具与其他诊断方式(如放射学和基因组学)相结合,能够对不同类型的肾细胞癌进行全新的多模态特征描述。随着不断的进步与完善,人工智能技术有望在诊断和临床决策中发挥不可或缺的作用,改善患者预后。在本文中,我们从病理学家和数据分析师的角度探讨了可用于透明细胞癌、乳头状癌和嫌色细胞癌的数字病理学工具。