Fayzullin Alexey, Ivanova Elena, Grinin Victor, Ermilov Dmitry, Solovyeva Svetlana, Balyasin Maxim, Bakulina Alesia, Nikitin Pavel, Valieva Yana, Kalinichenko Alina, Arutyunyan Alexander, Lychagin Aleksey, Timashev Peter
Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow 119991, Russia.
World-Class Research Center "Digital Biodesign and Personalized Healthcare, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow 119991, Russia.
Comput Struct Biotechnol J. 2024 Aug 16;24:571-582. doi: 10.1016/j.csbj.2024.08.011. eCollection 2024 Dec.
The Banff classification is useful for diagnosing renal transplant rejection. However, it has limitations due to subjectivity and varying concordance in physicians' assessments. Artificial intelligence (AI) can help standardize research, increase objectivity and accurately quantify morphological characteristics, improving reproducibility in clinical practice. This study aims to develop an AI-based solutions for diagnosing acute kidney transplant rejection by introducing automated evaluation of prognostic morphological patterns. The proposed approach aims to help accurately distinguish borderline changes from rejection. We trained a deep-learning model utilizing a fine-tuned Mask R-CNN architecture which achieved a mean Average Precision value of 0.74 for the segmentation of renal tissue structures. A strong positive nonlinear correlation was found between the measured infiltration areas and fibrosis, indicating the model's potential for assessing these parameters in kidney biopsies. The ROC analysis showed a high predictive ability for distinguishing between ci and i scores based on infiltration area and fibrosis area measurements. The AI model demonstrated high precision in predicting clinical scores which makes it a promising AI assisting tool for pathologists. The application of AI in nephropathology has a potential for advancements, including automated morphometric evaluation, 3D histological models and faster processing to enhance diagnostic accuracy and efficiency.
班夫分类法有助于诊断肾移植排斥反应。然而,由于主观性以及医生评估中存在不同程度的一致性,它存在局限性。人工智能(AI)有助于使研究标准化,提高客观性并准确量化形态特征,从而提高临床实践中的可重复性。本研究旨在通过引入对预后形态模式的自动评估,开发基于人工智能的解决方案来诊断急性肾移植排斥反应。所提出的方法旨在帮助准确区分临界变化与排斥反应。我们使用微调后的Mask R-CNN架构训练了一个深度学习模型,该模型在肾组织结构分割方面的平均精度均值为0.74。在测量的浸润面积与纤维化之间发现了强正非线性相关性,表明该模型在评估肾活检中的这些参数方面具有潜力。ROC分析表明,基于浸润面积和纤维化面积测量,在区分ci和i评分方面具有较高的预测能力。人工智能模型在预测临床评分方面表现出高精度,这使其成为病理学家有前景的人工智能辅助工具。人工智能在肾脏病理学中的应用有取得进展的潜力,包括自动形态计量评估、3D组织学模型以及更快的处理速度,以提高诊断准确性和效率。