Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Ag. Paraskevi, 15310 Athens, Greece.
Int J Mol Sci. 2023 Nov 15;24(22):16336. doi: 10.3390/ijms242216336.
Currently, X-ray crystallography, which typically uses synchrotron sources, remains the dominant method for structural determination of proteins and other biomolecules. However, small protein crystals do not provide sufficiently high-resolution diffraction patterns and suffer radiation damage; therefore, conventional X-ray crystallography needs larger protein crystals. The burgeoning method of serial crystallography using X-ray free-electron lasers (XFELs) avoids these challenges: it affords excellent structural data from weakly diffracting objects, including tiny crystals. An XFEL is implemented by irradiating microjets of suspensions of microcrystals with very intense X-ray beams. However, while the method for creating microcrystalline microjets is well established, little attention is given to the growth of high-quality nano/microcrystals suitable for XFEL experiments. In this study, in order to assist the growth of such crystals, we calculate the mean crystal size and the time needed to grow crystals to the desired size in batch crystallization (the predominant method for preparing the required microcrystalline slurries); this time is reckoned theoretically both for microcrystals and for crystals larger than the upper limit of the Gibbs-Thomson effect. The impact of the omnipresent impurities on the growth of microcrystals is also considered quantitatively. Experiments, performed with the model protein lysozyme, support the theoretical predictions.
目前,X 射线晶体学(通常使用同步加速器源)仍然是蛋白质和其他生物分子结构测定的主要方法。然而,小的蛋白质晶体不能提供足够高分辨率的衍射图案,并且容易受到辐射损伤;因此,传统的 X 射线晶体学需要更大的蛋白质晶体。新兴的使用 X 射线自由电子激光(XFEL)的连续结晶方法避免了这些挑战:它可以从弱衍射物体中获得极好的结构数据,包括微小晶体。XFEL 通过用非常强的 X 射线束辐照悬浮在微射流中的微晶体来实现。然而,虽然微晶体微射流的生成方法已经很成熟,但很少关注适合 XFEL 实验的高质量纳米/微晶体的生长。在这项研究中,为了辅助这些晶体的生长,我们计算了在批量结晶(制备所需微晶体悬浮液的主要方法)中晶体生长到所需尺寸的平均晶体尺寸和所需时间;对于微晶体和大于吉布斯-汤姆逊效应上限的晶体,我们从理论上计算了这个时间。还定量考虑了普遍存在的杂质对微晶体生长的影响。使用模型蛋白溶菌酶进行的实验支持了理论预测。