College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Forage and Range Research Laboratory, United States Department of Agriculture, 695 North 1100 East, Logan, UT 84322-6300, USA.
Int J Mol Sci. 2023 Nov 15;24(22):16370. doi: 10.3390/ijms242216370.
Orchardgrass ( L.) is among the most economically important perennial cool-season grasses, and is considered an excellent hay, pasture, and silage crop in temperate regions worldwide. Tillering is a vital feature that dominates orchardgrass regeneration and biomass yield. However, transcriptional dynamics underlying early-stage bud development in high- and low-tillering orchardgrass genotypes are unclear. Thus, this study assessed the photosynthetic parameters, the partially essential intermediate biomolecular substances, and the transcriptome to elaborate the early-stage profiles of tiller development. Photosynthetic efficiency and morphological development significantly differed between high- (AKZ-NRGR667) and low-tillering genotypes (D20170203) at the early stage after tiller formation. The 206.41 Gb of high-quality reads revealed stage-specific differentially expressed genes (DEGs), demonstrating that signal transduction and energy-related metabolism pathways, especially photosynthetic-related processes, influence tiller induction and development. Moreover, weighted correlation network analysis (WGCNA) and functional enrichment identified distinctively co-expressed gene clusters and four main regulatory pathways, including chlorophyll, lutein, nitrogen, and gibberellic acid (GA) metabolism pathways. Therefore, photosynthesis, carbohydrate synthesis, nitrogen efficient utilization, and phytohormone signaling pathways are closely and intrinsically linked at the transcriptional level. These findings enhance our understanding of tillering in orchardgrass and perennial grasses, providing a new breeding strategy for improving forage biomass yield.
鸭茅(Lolium perenne)是经济价值最高的多年生冷季禾本科牧草之一,在世界范围内被认为是温带地区优良的干草、牧场和青贮作物。分蘖是鸭茅再生和生物量产量的关键特征。然而,高、低分蘖鸭茅基因型早期芽发育的转录动态尚不清楚。因此,本研究评估了光合作用参数、部分必需的中间生物分子物质和转录组,以阐述分蘖发育的早期阶段特征。在分蘖形成后的早期阶段,高分蘖基因型(AKZ-NRGR667)和低分蘖基因型(D20170203)的光合效率和形态发育存在显著差异。206.41 Gb 的高质量读数揭示了阶段特异性差异表达基因(DEGs),表明信号转导和与能量相关的代谢途径,特别是与光合作用相关的过程,影响分蘖的诱导和发育。此外,加权相关网络分析(WGCNA)和功能富集确定了明显的共表达基因簇和四个主要的调控途径,包括叶绿素、叶黄素、氮和赤霉素(GA)代谢途径。因此,在转录水平上,光合作用、碳水化合物合成、氮有效利用和植物激素信号转导途径密切而内在地联系在一起。这些发现提高了我们对鸭茅和多年生禾本科植物分蘖的认识,为提高饲料生物量产量提供了新的育种策略。