Suppr超能文献

机器学习算法在预测一些线性牙弓测量值和预防前牙段错颌中的正畸应用:一项前瞻性研究。

Orthodontic Implementation of Machine Learning Algorithms for Predicting Some Linear Dental Arch Measurements and Preventing Anterior Segment Malocclusion: A Prospective Study.

机构信息

Department of Pedodontics, Orthodontics and Preventive Dentistry, College of Dentistry, University of Sulaimani, Sulaimaniyah 46001, Iraq.

Department of Basic Sciences, College of Dentistry, University of Sulaimani, Sulaimaniyah 46001, Iraq.

出版信息

Medicina (Kaunas). 2023 Nov 9;59(11):1973. doi: 10.3390/medicina59111973.

Abstract

: Orthodontics is a field that has seen significant advancements in recent years, with technology playing a crucial role in improving diagnosis and treatment planning. The study aimed to implement artificial intelligence to predict the arch width as a preventive measure to avoid future crowding in growing patients or even in adult patients seeking orthodontic treatment as a tool for orthodontic diagnosis. : Four hundred and fifty intraoral scan (IOS) images were selected from orthodontic patients seeking treatment in private orthodontic centers. Real inter-canine, inter-premolar, and inter-molar widths were measured digitally. Two of the main machine learning models were used: the Python programming language and machine learning algorithms, implementing the data on k-nearest neighbor and linear regression. : After the dataset had been implemented on the two ML algorithms, linear regression and k-nearest neighbor, the evaluation metric shows that KNN gives better prediction accuracy than LR does. The resulting accuracy was around 99%. : it is possible to leverage machine learning to enhance orthodontic diagnosis and treatment planning by predicting linear dental arch measurements and preventing anterior segment malocclusion.

摘要

: 近年来,正畸领域取得了重大进展,技术在改善诊断和治疗计划方面发挥了关键作用。本研究旨在实施人工智能来预测牙弓宽度,作为预防措施,以避免生长中的患者未来出现拥挤,甚至对于寻求正畸治疗的成年患者,将其作为正畸诊断的工具。: 从私人正畸中心寻求治疗的正畸患者中选择了 450 个口腔内扫描 (IOS) 图像。数字测量真实的犬牙间、双尖牙间和磨牙间宽度。使用了两种主要的机器学习模型:Python 编程语言和机器学习算法,实现了 K 最近邻和线性回归的数据。: 在将数据集应用于两种 ML 算法(线性回归和 K 最近邻)之后,评估指标表明 KNN 比 LR 具有更好的预测准确性。最终的准确性约为 99%。: 可以利用机器学习通过预测线性牙弓测量值和预防前牙段错位来增强正畸诊断和治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfbf/10673436/f8fd1917cd88/medicina-59-01973-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验