Mirbeik Amir, Najafizadeh Laleh, Ebadi Negar
RadioSight LLC, Hoboken, NJ 07030, USA.
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA.
Micromachines (Basel). 2023 Oct 31;14(11):2031. doi: 10.3390/mi14112031.
In this work, we present a transceiver front-end in SiGe BiCMOS technology that can provide an ultra-wide bandwidth of 100 GHz at millimeter-wave frequencies. The front-end utilizes an innovative arrangement to efficiently distribute broadband-generated pulses and coherently combine received pulses with minimal loss. This leads to the realization of a fully integrated ultra-high-resolution imaging chip for biomedical applications. We realized an ultra-wide imaging band-width of 100 GHz via the integration of two adjacent disjointed frequency sub-bands of 10-50 GHz and 50-110 GHz. The transceiver front-end is capable of both transmit (TX) and receive (RX) operations. This is a crucial component for a system that can be expanded by repeating a single unit cell in both the horizontal and vertical directions. The imaging elements were designed and fabricated in Global Foundry 130-nm SiGe 8XP process technology.
在这项工作中,我们展示了一种采用硅锗双极互补金属氧化物半导体(SiGe BiCMOS)技术的收发器前端,它能够在毫米波频率下提供100GHz的超宽带宽。该前端采用创新的布局,以有效地分配宽带产生的脉冲,并以最小的损耗将接收的脉冲进行相干组合。这促成了用于生物医学应用的完全集成超高分辩率成像芯片的实现。我们通过集成10 - 50GHz和50 - 110GHz这两个相邻的不连续频率子带来实现100GHz的超宽成像带宽。该收发器前端能够进行发射(TX)和接收(RX)操作。对于一个可以通过在水平和垂直方向重复单个单元来扩展的系统而言,这是一个关键组件。成像元件是采用格芯130纳米硅锗8XP工艺技术设计和制造的。