Mezeix Laurent, Rivas Ainhoa Soldevila, Relandeau Antonin, Bouvet Christophe
Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi 20131, Thailand.
INSA Toulouse, 135 Avenue de Rangueil, CEDEX 4, 31077 Toulouse, France.
Materials (Basel). 2023 Nov 17;16(22):7213. doi: 10.3390/ma16227213.
To reduce the cost of developing composite aeronautical structures, manufacturers and university researchers are increasingly using "virtual testing" methods. Then, finite element methods (FEMs) are intensively used to calculate mechanical behavior and to predict the damage to fiber-reinforced polymer (FRP) composites under impact loading, which is a crucial design aspect for aeronautical composite structures. But these FEMs require a lot of knowledge and a significant number of IT resources to run. Therefore, artificial intelligence could be an interesting way of sizing composites in terms of impact damage tolerance. In this research, the authors propose a methodology and deep learning-based approach to predict impact damage to composites. The data are both collected from the literature and created using an impact simulation performed using an FEM. The data augmentation method is also proposed to increase the data number from 149 to 2725. Firstly, a CNN model is built and optimized, and secondly, an aggregation of two CNN architectures is proposed. The results show that the use of an aggregation of two CNNs provides better performance than a single CNN. Finally, the aggregated CNN model prediction demonstrates the potential for CNN models to accelerate composite design by showing a 0.15 mm precision for all the length measurements, an average delaminated surface error of 56 mm, and an error rate of 7% for the prediction of the presence of delamination.
为降低复合航空结构的开发成本,制造商和大学研究人员越来越多地采用“虚拟测试”方法。然后,有限元方法(FEM)被广泛用于计算力学行为,并预测纤维增强聚合物(FRP)复合材料在冲击载荷下的损伤,这是航空复合结构设计的一个关键方面。但这些有限元方法需要大量知识和大量信息技术资源才能运行。因此,人工智能可能是一种在冲击损伤容限方面对复合材料进行尺寸设计的有趣方法。在这项研究中,作者提出了一种基于深度学习的方法来预测复合材料的冲击损伤。数据既从文献中收集,也通过使用有限元方法进行的冲击模拟生成。还提出了数据增强方法,将数据数量从149增加到2725。首先,构建并优化了一个卷积神经网络(CNN)模型,其次,提出了两种CNN架构的聚合。结果表明,使用两种CNN的聚合比单个CNN具有更好的性能。最后,聚合后的CNN模型预测显示,对于所有长度测量,精度为0.15毫米,分层表面平均误差为56毫米,分层存在预测的错误率为7%,这表明CNN模型有潜力加速复合材料设计。