Suppr超能文献

具有自适应聚类的个性化联邦学习算法,用于融合多任务学习和神经网络模型特征的非独立同分布物联网数据

Personalized Federated Learning Algorithm with Adaptive Clustering for Non-IID IoT Data Incorporating Multi-Task Learning and Neural Network Model Characteristics.

作者信息

Hsu Hua-Yang, Keoy Kay Hooi, Chen Jun-Ru, Chao Han-Chieh, Lai Chin-Feng

机构信息

Shenzhen Graduate School, Peking University, Beijing 100191, China.

UCSI Graduate Business School, UCSI University, Kuala Lumpur 56000, Malaysia.

出版信息

Sensors (Basel). 2023 Nov 7;23(22):9016. doi: 10.3390/s23229016.

Abstract

The proliferation of IoT devices has led to an unprecedented integration of machine learning techniques, raising concerns about data privacy. To address these concerns, federated learning has been introduced. However, practical implementations face challenges, including communication costs, data and device heterogeneity, and privacy security. This paper proposes an innovative approach within the context of federated learning, introducing a personalized joint learning algorithm for Non-IID IoT data. This algorithm incorporates multi-task learning principles and leverages neural network model characteristics. To overcome data heterogeneity, we present a novel clustering algorithm designed specifically for federated learning. Unlike conventional methods that require a predetermined number of clusters, our approach utilizes automatic clustering, eliminating the need for fixed cluster specifications. Extensive experimentation demonstrates the exceptional performance of the proposed algorithm, particularly in scenarios with specific client distributions. By significantly improving the accuracy of trained models, our approach not only addresses data heterogeneity but also strengthens privacy preservation in federated learning. In conclusion, we offer a robust solution to the practical challenges of federated learning in IoT environments. By combining personalized joint learning, automatic clustering, and neural network model characteristics, we facilitate more effective and privacy-conscious machine learning in Non-IID IoT data settings.

摘要

物联网设备的激增导致机器学习技术实现了前所未有的整合,引发了对数据隐私的担忧。为了解决这些担忧,引入了联邦学习。然而,实际应用面临着诸多挑战,包括通信成本、数据和设备的异质性以及隐私安全。本文在联邦学习的背景下提出了一种创新方法,引入了一种针对非独立同分布物联网数据的个性化联合学习算法。该算法融合了多任务学习原理并利用了神经网络模型的特性。为了克服数据异质性,我们提出了一种专门为联邦学习设计的新型聚类算法。与需要预先确定聚类数量的传统方法不同,我们的方法采用自动聚类,无需固定的聚类规格。大量实验证明了所提算法的卓越性能,特别是在具有特定客户端分布的场景中。通过显著提高训练模型的准确性,我们的方法不仅解决了数据异质性问题,还加强了联邦学习中的隐私保护。总之,我们为物联网环境中联邦学习的实际挑战提供了一个强大的解决方案。通过结合个性化联合学习、自动聚类和神经网络模型的特性,我们在非独立同分布物联网数据设置中促进了更有效且注重隐私的机器学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cde/10675707/dc731df65203/sensors-23-09016-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验