Suppr超能文献

一种用于联邦学习的公平贡献度量方法。

A Fair Contribution Measurement Method for Federated Learning.

作者信息

Guo Peng, Yang Yanqing, Guo Wei, Shen Yanping

机构信息

School of Computer Science and Technology (School of Cyberspace Security), Xinjiang University, Urumqi 830046, China.

Key Laboratory of Application Innovation in Emergency Command Communication Technology Ministry of Emergency Management, Ministry of Emergency Management Big Data Center, Beijing 100013, China.

出版信息

Sensors (Basel). 2024 Jul 31;24(15):4967. doi: 10.3390/s24154967.

Abstract

Federated learning is an effective approach for preserving data privacy and security, enabling machine learning to occur in a distributed environment and promoting its development. However, an urgent problem that needs to be addressed is how to encourage active client participation in federated learning. The Shapley value, a classical concept in cooperative game theory, has been utilized for data valuation in machine learning services. Nevertheless, existing numerical evaluation schemes based on the Shapley value are impractical, as they necessitate additional model training, leading to increased communication overhead. Moreover, participants' data may exhibit Non-IID characteristics, posing a significant challenge to evaluating participant contributions. Non-IID data have greatly affected the accuracy of the global model, weakened the marginal effect of the participants, and led to the underestimated contribution measurement results of the participants. Current work often overlooks the impact of heterogeneity on model aggregation. This paper presents a fair federated learning contribution measurement scheme that addresses the need for additional model computations. By introducing a novel aggregation weight, it enhances the accuracy of the contribution measurement. Experiments on the MNIST and Fashion MNIST dataset show that the proposed method can accurately compute the contributions of participants. Compared to existing baseline algorithms, the model accuracy is significantly improved, with a similar time cost.

摘要

联邦学习是一种保护数据隐私和安全的有效方法,它使机器学习能够在分布式环境中进行,并推动其发展。然而,一个亟待解决的问题是如何鼓励客户端积极参与联邦学习。夏普利值是合作博弈论中的一个经典概念,已被用于机器学习服务中的数据估值。然而,现有的基于夏普利值的数值评估方案不切实际,因为它们需要额外的模型训练,从而导致通信开销增加。此外,参与者的数据可能呈现非独立同分布(Non-IID)特征,这对评估参与者的贡献构成了重大挑战。非独立同分布数据极大地影响了全局模型的准确性,削弱了参与者的边际效应,并导致对参与者贡献测量结果的低估。当前的工作往往忽视了异质性对模型聚合的影响。本文提出了一种公平的联邦学习贡献测量方案,解决了额外模型计算的需求。通过引入一种新颖的聚合权重,提高了贡献测量的准确性。在MNIST和Fashion MNIST数据集上的实验表明,该方法能够准确计算参与者的贡献。与现有的基线算法相比,模型准确性显著提高,且时间成本相近。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe7/11314990/27b3b5cabf75/sensors-24-04967-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验