Yang Ting, Wang Jundong, Sun Zhigang, Li Sen
CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
Shandong Dongying Institute of Geographic Sciences, Dongying 257000, China.
Sensors (Basel). 2023 Nov 9;23(22):9066. doi: 10.3390/s23229066.
The Cyclone Global Navigation Satellite System (CYGNSS), a publicly accessible spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) data, provides a new alternative opportunity for large-scale soil moisture (SM) retrieval, but with interference from complex environmental conditions (i.e., vegetation cover and ground roughness). This study aims to develop a high-accuracy model for CYGNSS SM retrieval. The normalized surface reflectivity calculated by CYGNSS is fused with variables that are highly related to the SM obtained from optical/microwave remote sensing to solve the problem of the influence of complicated environmental conditions. The Gradient Boost Regression Tree (GBRT) model aided by land-type data is then used to construct a multi-variables SM retrieval model with six different land types of multiple models. The methodology is tested in southeastern China, and the results correlate very well with the existing satellite remote sensing products and in situ SM data (R = 0.765, ubRMSE = 0.054 mm vs. SMAP; R = 0.653, ubRMSE = 0.057 m m vs. ERA5 SM; R = 0.691, ubRMSE = 0.057 mm vs. in situ SM). This study makes contributions from two aspects: (1) improves the accuracy of the CYGNSS retrieval of SM based on fusion with other auxiliary data; (2) constructs the SM retrieval model with multi-layer multiple models, which is suitable for different land properties.
热带气旋全球导航卫星系统(CYGNSS)是一种可公开获取的星载全球导航卫星系统反射测量(GNSS-R)数据,为大规模土壤湿度(SM)反演提供了新的替代机会,但受到复杂环境条件(即植被覆盖和地面粗糙度)的干扰。本研究旨在开发一种用于CYGNSS土壤湿度反演的高精度模型。通过将CYGNSS计算得到的归一化地表反射率与从光学/微波遥感获得的与土壤湿度高度相关的变量进行融合,以解决复杂环境条件的影响问题。然后,利用土地类型数据辅助的梯度提升回归树(GBRT)模型构建包含六种不同土地类型的多变量土壤湿度反演多模型。该方法在中国东南部进行了测试,结果与现有的卫星遥感产品和原位土壤湿度数据相关性非常好(与SMAP相比,R = 0.765,ubRMSE = 0.054 mm;与ERA5土壤湿度相比,R = 0.653,ubRMSE = 0.057 mm;与原位土壤湿度相比,R = 0.691,ubRMSE = 0.057 mm)。本研究从两个方面做出了贡献:(1)通过与其他辅助数据融合提高了CYGNSS土壤湿度反演的精度;(2)构建了适用于不同土地特性的多层多模型土壤湿度反演模型。