RSI EnTech, LLC, USA.
Numerical Terradynamic Simulation Group, University of Montana, USA.
J Environ Manage. 2024 Oct;369:122254. doi: 10.1016/j.jenvman.2024.122254. Epub 2024 Aug 31.
One reason arid and semi-arid environments have been used to store waste is due to low groundwater recharge, presumably limiting the potential for meteoric water to mobilize and transport contaminants into groundwater. The U.S. Department of Energy Office of Legacy Management (LM) is evaluating selected uranium mill tailings disposal cell covers to be managed as evapotranspiration (ET) covers, where vegetation is used to naturally remove water from the cover profile via transpiration, further reducing deep percolation. An important parameter in monitoring the performance of ET covers is soil moisture (SM). If SM is too high, water may drain into tailings material, potentially transporting contaminants into groundwater; if SM is too low, radon flux may increase through the cover. However, monitoring SM via traditional instrumentation is invasive, expensive, and may fail to account for spatial heterogeneity, especially over vegetated disposal cells. Here we investigated the potential for non-invasive SM monitoring using radar remote sensing and other geospatial data to see if this approach could provide a practical, accurate, and spatially comprehensive tool to monitor SM. We used theoretical simulations to analyze the sensitivity of multi-frequency radar backscatter to SM at different depths of a field-scale (3 ha) drainage lysimeter embedded within an in-service LM disposal cell. We then evaluated a shallow and deep form of machine learning (ML) using Google Earth Engine to integrate multi-source observations and estimate the SM profile across six soil layers from depths of 0-2 m. The ML models were trained using in situ SM measurements from 2019 and validated using data from 2014 to 2018 and 2020-2021. Model predictors included backscatter observations from satellite synthetic aperture radar, vegetation, temperature products from optical infrared sensors, and accumulated, gridded rainfall data. The radar simulations confirmed that the lower frequencies (L- and P-band) and smaller incidence angles show better sensitivity to deeper soil layers and an overall larger SM dynamic range relative to the higher frequencies (C- and X-band). The ML models produced accurate SM estimates throughout the soil profile (r values from 0.75 to 0.94; RMSE = 0.003-0.017 cm/cm; bias = 0.00 cm/cm), with the simpler shallow-learning approach outperforming a selected deep-learning model. The ML models we developed provide an accurate, cost-effective tool for monitoring SM within ET covers that could be applied to other vegetated disposal cell covers, potentially including those with rock-armored covers.
一个将干旱和半干旱环境用于废物储存的原因是地下水位补给低,这可能限制了雨水迁移并将污染物带入地下水的潜力。美国能源部的遗留物管理办公室(LM)正在评估选定的铀矿尾矿处置单元格覆盖物,将其作为蒸发蒸腾(ET)覆盖物进行管理,其中植被用于通过蒸腾作用自然地从覆盖物剖面中去除水,进一步减少深层渗透。监测 ET 覆盖物性能的一个重要参数是土壤水分(SM)。如果 SM 过高,水可能会排入尾矿材料中,从而有可能将污染物带入地下水;如果 SM 过低,氡通量可能会通过覆盖物增加。然而,通过传统仪器监测 SM 是侵入性的、昂贵的,并且可能无法考虑空间异质性,尤其是在植被覆盖的处置单元上。在这里,我们研究了使用雷达遥感和其他地理空间数据进行非侵入性 SM 监测的潜力,以确定这种方法是否可以提供一种实用、准确且空间全面的工具来监测 SM。我们使用理论模拟来分析多频雷达后向散射对埋入运行中的 LM 处置单元内的现场规模(3 公顷)排水 lysimeter 不同深度处 SM 的敏感性。然后,我们使用 Google Earth Engine 评估了浅层和深层机器学习(ML)形式,以整合多源观测并估计从 0 到 2 m 深度的六个土壤层的 SM 剖面。ML 模型使用 2019 年的原位 SM 测量值进行训练,并使用 2014 年至 2018 年以及 2020 年至 2021 年的数据进行验证。模型预测因子包括来自卫星合成孔径雷达的后向散射观测值、植被、来自光学红外传感器的温度产品以及累积的网格化降雨数据。雷达模拟证实,较低的频率(L 波段和 P 波段)和较小的入射角相对于较高的频率(C 波段和 X 波段)对更深的土壤层具有更好的敏感性,并且具有更大的整体 SM 动态范围。ML 模型在整个土壤剖面中产生了准确的 SM 估计值(r 值从 0.75 到 0.94;RMSE=0.003-0.017 cm/cm;偏差=0.00 cm/cm),其中较简单的浅层学习方法的性能优于选定的深度学习模型。我们开发的 ML 模型为监测 ET 覆盖物中的 SM 提供了一种准确、经济有效的工具,该工具可应用于其他植被处置单元覆盖物,可能包括具有岩石装甲覆盖物的覆盖物。