Suppr超能文献

一种用于从街景图像中检测建筑物空调外机的改进型新YOLOv7算法。

An Improved New YOLOv7 Algorithm for Detecting Building Air Conditioner External Units from Street View Images.

作者信息

Tian Zhongmin, Yang Fei, Qin Donghong

机构信息

College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China.

State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Sensors (Basel). 2023 Nov 11;23(22):9118. doi: 10.3390/s23229118.

Abstract

Street view images are emerging as new street-level sources of urban environmental information. Accurate detection and quantification of urban air conditioners is crucial for evaluating the resilience of urban residential areas to heat wave disasters and formulating effective disaster prevention policies. Utilizing street view image data to predict the spatial coverage of urban air conditioners offers a simple and effective solution. However, detecting and accurately counting air conditioners in complex street-view environments remains challenging. This study introduced 3D parameter-free attention and coordinate attention modules into the target detection process to enhance the extraction of detailed features of air conditioner external units. It also integrated a small target detection layer to address the challenge of detecting small target objects that are easily missed. As a result, an improved algorithm named SC4-YOLOv7 was developed for detecting and recognizing air conditioner external units in street view images. To validate this new algorithm, we extracted air conditioner external units from street view images of residential buildings in Guilin City, Guangxi Zhuang Autonomous Region, China. The results of the study demonstrated that SC4-YOLOv7 significantly improved the average accuracy of recognizing air conditioner external units in street view images from 87.93% to 91.21% compared to the original YOLOv7 method while maintaining a high speed of image recognition detection. The algorithm has the potential to be extended to various applications requiring small target detection, enabling reliable detection and recognition in real street environments.

摘要

街景图像正成为城市环境信息的新的街道层面来源。准确检测和量化城市空调对于评估城市居民区对热浪灾害的抵御能力以及制定有效的防灾政策至关重要。利用街景图像数据预测城市空调的空间覆盖范围提供了一种简单有效的解决方案。然而,在复杂的街景环境中检测并准确计数空调仍然具有挑战性。本研究将3D无参数注意力模块和坐标注意力模块引入目标检测过程,以增强空调外机详细特征的提取。它还集成了一个小目标检测层来应对检测容易遗漏的小目标物体的挑战。结果,开发了一种名为SC4-YOLOv7的改进算法,用于检测和识别街景图像中的空调外机。为了验证这种新算法,我们从中国广西壮族自治区桂林市住宅建筑的街景图像中提取了空调外机。研究结果表明,与原始的YOLOv7方法相比,SC4-YOLOv7显著提高了街景图像中识别空调外机的平均准确率,从87.93%提高到91.21%,同时保持了较高的图像识别检测速度。该算法有潜力扩展到各种需要小目标检测的应用中,能够在真实街道环境中进行可靠的检测和识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b6/10674466/4908a8f20189/sensors-23-09118-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验