Suppr超能文献

磁处理水灌溉生菜植株的模糊建模开发

Fuzzy Modeling Development for Lettuce Plants Irrigated with Magnetically Treated Water.

作者信息

Ferrari Putti Fernando, Cremasco Camila Pires, Neto Alfredo Bonini, Barbosa Ana Carolina Kummer, Júnior Josué Ferreira da Silva, Reis André Rodrigues Dos, Góes Bruno César, Arruda Bruna, Filho Luís Roberto Almeida Gabriel

机构信息

School of Science and Engineering, São Paulo State University (UNESP), Tupã 01049-010, SP, Brazil.

Department of Civil Engineering, Ponta Grossa State University (UEPG), Ponta Grossa 84010-330, PR, Brazil.

出版信息

Plants (Basel). 2023 Nov 9;12(22):3811. doi: 10.3390/plants12223811.

Abstract

Due to the worldwide water supply crisis, sustainable strategies are required for a better use of this resource. The use of magnetic water has been shown to have potential for improving irrigation efficacy. However, a lack of modelling methods that correspond to the experimental results and minimize error is observed. This study aimed to estimate the replacement rates of magnetic water provided by irrigation for lettuce production using a mathematical model based on fuzzy logic and to compare multiple polynomial regression analysis and the fuzzy model. A greenhouse study was conducted with lettuce using two types of water, magnetic water (MW) and conventional water (CW), and five irrigation levels (25, 50, 75, 100 and 125%) of crop evapotranspiration. Plant samples for biometric lettuce were taken at 14, 21, 28 and 35 days after transplanting. The data were analyzed via multiple polynomial regression and fuzzy mathematical modeling, followed by an inference of the models and a comparison between the methods. The highest biometric values for lettuce were observed when irrigated with MW during the different phenological stage evaluated. The fuzzy model provided a more exact adjustment when compared to the multiple polynomial regressions.

摘要

由于全球水资源供应危机,需要可持续战略来更好地利用这一资源。已表明使用磁化水具有提高灌溉效率的潜力。然而,发现缺乏与实验结果相符并能将误差降至最低的建模方法。本研究旨在使用基于模糊逻辑的数学模型估算生菜生产灌溉中磁化水的替代率,并比较多元多项式回归分析和模糊模型。使用两种类型的水,即磁化水(MW)和常规水(CW),以及五种作物蒸散量的灌溉水平(25%、50%、75%、100%和125%)对生菜进行了温室研究。在移栽后14、21、28和35天采集生菜生物特征的植物样本。通过多元多项式回归和模糊数学建模对数据进行分析,随后对模型进行推断并比较这两种方法。在评估的不同物候期用磁化水灌溉时,生菜的生物特征值最高。与多元多项式回归相比,模糊模型提供了更精确的拟合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6587/10675103/b9a42dc6913f/plants-12-03811-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验