State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
ACS Nano. 2023 Dec 12;17(23):23889-23902. doi: 10.1021/acsnano.3c08174. Epub 2023 Nov 25.
Development of a nanoscale drug delivery system that can simultaneously exert efficient tumor therapeutic efficacy while creating the desired antitumor immune responses is still challenging. Herein, we report the use of a manganese dioxide (MnO)-entrapping dendrimer nanocarrier to codeliver glucose oxidase (GOx) and cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING) for improved tumor chemodynamic/starvation/immune therapy. Methoxy poly(ethylene glycol) (PEG)- and phenylboronic acid (PBA)-modified generation 5 (G5) poly(amidoamine) dendrimers were first synthesized and then entrapped with MnO nanoparticles (NPs) to generate the hybrid MnO@G5-PEG-PBA (MGPP) NPs. The created MGPP NPs with an MnO core size of 2.8 nm display efficient glutathione depletion ability, and a favorable Mn release profile under a tumor microenvironment mimetic condition to enable Fenton-like reaction and -weighted magnetic resonance (MR) imaging. We show that the MGPP-mediated GOx delivery facilitates enhanced chemodynamic/starvation therapy of cancer cells in vitro, and further codelivery of cGAMP can effectively trigger immunogenic cell death (ICD) to strongly promote the maturation of dendritic cells. In a bilateral mouse colorectal tumor model, the dendrimer delivery nanosystem elicits a potent antitumor performance with a strong abscopal effect, greatly improving the overall mouse survival rate. Importantly, the dendrimer-mediated codelivery not only allows the coordination of Mn with GOx and cGAMP for respective chemodynamic/starvation-triggered ICD and augmented STING activation to boost systemic antitumor immune responses, but also enables -weighted tumor MR imaging, potentially serving as a promising nanoplatform for enhanced antitumor therapy with desired immune responses.
开发一种能够同时发挥高效肿瘤治疗效果并产生所需抗肿瘤免疫反应的纳米药物递送系统仍然具有挑战性。在此,我们报告了使用二氧化锰(MnO)包埋树突状纳米载体共递送葡萄糖氧化酶(GOx)和环鸟苷酸-腺苷酸(cGAMP),即干扰素基因刺激物(STING)的激动剂,以改善肿瘤化学动力学/饥饿/免疫治疗。首先合成了甲氧基聚(乙二醇)(PEG)和苯硼酸(PBA)修饰的第五代(G5)聚(酰胺胺)树突状聚合物,然后将其包埋在 MnO 纳米颗粒(NPs)中以生成混合的 MnO@G5-PEG-PBA(MGPP) NPs。具有 2.8nm MnO 核大小的所创建的 MGPP NPs 具有有效的谷胱甘肽耗竭能力,并且在模拟肿瘤微环境的条件下具有有利的 Mn 释放曲线,从而能够进行芬顿样反应和 T1 加权磁共振(MR)成像。我们表明,MGPP 介导的 GOx 递送达增强了体外癌细胞的化学动力学/饥饿治疗,并且进一步共递送 cGAMP 可以有效地触发免疫原性细胞死亡(ICD),从而强烈促进树突状细胞的成熟。在双侧小鼠结直肠肿瘤模型中,树枝状聚合物递送纳米系统引发了强大的抗肿瘤性能,并具有强烈的远隔效应,大大提高了整体小鼠存活率。重要的是,树枝状聚合物介导的共递送不仅允许 Mn 与 GOx 和 cGAMP 协调,以分别进行化学动力学/饥饿触发的 ICD 和增强的 STING 激活,从而增强全身抗肿瘤免疫反应,而且还能够进行 T1 加权肿瘤 MR 成像,可能成为具有所需免疫反应的增强抗肿瘤治疗的有前途的纳米平台。