Tian Feng, Zhai Jintao, Gong Jinru, Lei Weirui, Chang Shuai, Ju Fangfang, Qian Shengyou, Zou Xiao
Hunan Normal University, The School of Physics and Electronics, Changsha, China.
Hunan University, College of Computer Science and Electronic Engineering, Changsha, China.
J Med Imaging (Bellingham). 2025 Mar;12(2):027001. doi: 10.1117/1.JMI.12.2.027001. Epub 2025 Feb 27.
Segmentation of ultrasound images for medical diagnosis, monitoring, and research is crucial, and although existing methods perform well, they are limited by specific organs, tumors, and image devices. Applications of the Segment Anything Model (SAM), such as SAM-med2d, use a large number of medical datasets that contain only a small fraction of the ultrasound medical images.
In this work, we proposed a SAM-MedUS model for generic ultrasound image segmentation that utilizes the latest publicly available ultrasound image dataset to create a diverse dataset containing eight site categories for training and testing. We integrated ConvNext V2 and CM blocks in the encoder for better global context extraction. In addition, a boundary loss function is used to improve the segmentation of fuzzy boundaries and low-contrast ultrasound images.
Experimental results show that SAM-MedUS outperforms recent methods on multiple ultrasound datasets. For the more easily datasets such as the adult kidney, it achieves 87.93% IoU and 93.58% dice, whereas for more complex ones such as the infant vein, IoU and dice reach 62.31% and 78.93%, respectively.
We collected and collated an ultrasound dataset of multiple different site types to achieve uniform segmentation of ultrasound images. In addition, the use of additional auxiliary branches ConvNext V2 and CM block enhances the ability of the model to extract global information and the use of boundary loss allows the model to exhibit robust performance and excellent generalization ability.
超声图像分割对于医学诊断、监测和研究至关重要,尽管现有方法表现良好,但它们受到特定器官、肿瘤和图像设备的限制。诸如SAM-med2d之类的分割一切模型(SAM)的应用使用大量医学数据集,其中仅包含一小部分超声医学图像。
在这项工作中,我们提出了一种用于通用超声图像分割的SAM-MedUS模型,该模型利用最新的公开可用超声图像数据集来创建一个包含八个部位类别的多样化数据集,用于训练和测试。我们在编码器中集成了ConvNext V2和CM模块,以更好地提取全局上下文信息。此外,使用边界损失函数来改善模糊边界和低对比度超声图像的分割效果。
实验结果表明,SAM-MedUS在多个超声数据集上优于近期方法。对于诸如成人肾脏等较容易的数据集,其交并比(IoU)达到87.93%,骰子系数(dice)达到93.58%;而对于诸如婴儿静脉等更复杂的数据集,IoU和dice分别达到62.31%和78.93%。
我们收集并整理了一个包含多种不同部位类型的超声数据集,以实现超声图像的统一分割。此外,使用额外的辅助分支ConvNext V2和CM模块增强了模型提取全局信息的能力,并且使用边界损失使模型表现出强大的性能和出色的泛化能力。