Wexler D B, Moore-Ede M C
Aviat Space Environ Med. 1986 Dec;57(12 Pt 1):1144-9.
Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophase shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function.
在环境时间线索发生相位变化后,生理和行为功能中的昼夜节律会逐渐重新同步。为了在昼行性灵长类动物模型中表征昼夜节律重新同步的速率,在松鼠猴中监测了环境光暗周期(12小时光照和12小时黑暗,LD 12:12)进行8小时相位变化前后的体温、运动活动以及通过多导记录法确定的睡眠-觉醒状态。对于体温节律,相位延迟变化后重新同步需要4天,相位提前变化后需要5天;对于休息-活动周期,重新同步时间分别为3天和6天。在延迟变化后的早期间隔内,活动高峰相位比体温高峰相位更快地发生移动,但节律之间的这种内部不同步在重新同步过程中消失。对早期重新同步过程的进一步研究需要着重于识别诱发效应并测量昼夜节律起搏器功能。