Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
Regenerative Medicine Utrecht, Utrecht University, Utrecht, Netherlands.
Elife. 2023 Nov 27;12:e80936. doi: 10.7554/eLife.80936.
During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.
在进化过程中,动物从陆地回到水中,通过形态学的改变来适应水生环境的生活。我们比较了跨越广泛体重范围的海洋和陆地哺乳动物的肱骨头部的骨软骨单位,重点关注微观结构组织和生物力学性能。水生哺乳动物的软骨具有基本随机的胶原纤维结构,缺乏陆地哺乳动物物种特有的深度依赖的拱廊样组织。它们的关节软骨在平衡时的刚性较小,峰值模量显著降低,在骨软骨界面没有钙化软骨层,仅显示出一层薄而高度多孔的软骨下骨板。水生哺乳动物的骨软骨单位这种完全不同的结构反映了适应负荷是骨软骨单位的原始功能。认识到微观结构-功能关系的至关重要性对于理解关节生物学至关重要,因此对于开发持久的功能性再生方法来治疗关节损伤至关重要,而目前还缺乏这种方法。