Suppr超能文献

学习认知灵活性:适应时变需求的转换准备状态的神经基础。

Learning Cognitive Flexibility: Neural Substrates of Adapting Switch-Readiness to Time-varying Demands.

机构信息

Wake Forest University, Winston-Salem, NC.

Duke University, Durham, NC.

出版信息

J Cogn Neurosci. 2024 Feb 1;36(2):377-393. doi: 10.1162/jocn_a_02091.

Abstract

An individual's readiness to switch tasks (cognitive flexibility) varies over time, in part, as the result of reinforcement learning based on the statistical structure of the world around them. Consequently, the behavioral cost associated with task-switching is smaller in contexts where switching is frequent than where it is rare, but the underlying brain mechanisms of this adaptation in cognitive flexibility are not well understood. Here, we manipulated the likelihood of switches across blocks of trials in a classic cued task-switching paradigm while participants underwent fMRI. As anticipated, behavioral switch costs decreased as the probability of switching increased, and neural switch costs were observed in lateral and medial frontoparietal cortex. To study moment-by-moment adjustments in cognitive flexibility at the neural level, we first fitted the behavioral RT data with reinforcement learning algorithms and then used the resulting trial-wise prediction error estimate as a regressor in a model-based fMRI analysis. The results revealed that lateral frontal and parietal cortex activity scaled positively with unsigned switch prediction error and that there were no brain regions encoding signed (i.e., switch- or repeat-specific) prediction error. Taken together, this study documents that adjustments in cognitive flexibility to time-varying switch demands are mediated by frontoparietal cortex tracking the likelihood of forthcoming task switches.

摘要

个体切换任务的准备程度(认知灵活性)会随时间变化,部分原因是基于他们周围世界的统计结构的强化学习。因此,在频繁切换的情况下,与任务切换相关的行为成本比在很少切换的情况下要小,但这种认知灵活性适应性的潜在大脑机制尚不清楚。在这里,我们在经典的提示任务切换范式中,在不同的试次块中操纵切换的可能性,同时让参与者接受 fMRI 扫描。正如预期的那样,随着切换概率的增加,行为切换成本降低,并且在外侧和内侧额顶叶皮层中观察到了神经切换成本。为了在神经水平上研究认知灵活性的瞬间调整,我们首先使用强化学习算法拟合行为 RT 数据,然后将得到的逐试预测误差估计用作基于模型的 fMRI 分析中的回归量。结果表明,外侧额顶叶皮层的活动与未符号化的切换预测误差呈正相关,并且没有大脑区域编码符号化的(即切换或重复特定的)预测误差。总的来说,这项研究表明,额叶顶叶皮层对即将到来的任务切换可能性的跟踪,介导了对时变切换需求的认知灵活性的调整。

相似文献

3
Switch-Independent Task Representations in Frontal and Parietal Cortex.额叶和顶叶皮质中与开关无关的任务表征
J Neurosci. 2017 Aug 16;37(33):8033-8042. doi: 10.1523/JNEUROSCI.3656-16.2017. Epub 2017 Jul 20.
5
Minimal impact of consolidation on learned switch-readiness.巩固对习得的转换准备影响最小。
J Exp Psychol Learn Mem Cogn. 2021 Oct;47(10):1622-1637. doi: 10.1037/xlm0001074. Epub 2021 Oct 25.
8
Neural Mechanisms of Strategic Adaptation in Attentional Flexibility.注意灵活性中策略性适应的神经机制。
J Cogn Neurosci. 2020 May;32(5):989-1008. doi: 10.1162/jocn_a_01541. Epub 2020 Feb 4.
10

本文引用的文献

1
Principles of cognitive control over task focus and task switching.对任务焦点和任务切换进行认知控制的原则。
Nat Rev Psychol. 2023 Nov;2(11):702-714. doi: 10.1038/s44159-023-00234-4. Epub 2023 Sep 27.
3
4
The location independence of learned attentional flexibility.习得性注意灵活性的位置独立性。
Atten Percept Psychophys. 2022 Apr;84(3):682-699. doi: 10.3758/s13414-022-02469-4. Epub 2022 Mar 30.
6
Neural systems underlying the learning of cognitive effort costs.认知努力成本学习的神经基础。
Cogn Affect Behav Neurosci. 2021 Aug;21(4):698-716. doi: 10.3758/s13415-021-00893-x. Epub 2021 May 7.
7
Neural Substrates of Working Memory Updating.工作记忆更新的神经基础。
J Cogn Neurosci. 2020 Dec;32(12):2285-2302. doi: 10.1162/jocn_a_01625. Epub 2020 Sep 8.
9
Neural Mechanisms of Strategic Adaptation in Attentional Flexibility.注意灵活性中策略性适应的神经机制。
J Cogn Neurosci. 2020 May;32(5):989-1008. doi: 10.1162/jocn_a_01541. Epub 2020 Feb 4.
10
Chemistry of the Adaptive Mind: Lessons from Dopamine.适应心智的化学:多巴胺的启示。
Neuron. 2019 Oct 9;104(1):113-131. doi: 10.1016/j.neuron.2019.09.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验