IEEE Trans Neural Syst Rehabil Eng. 2024;32:83-93. doi: 10.1109/TNSRE.2023.3336897. Epub 2024 Jan 15.
Drowsy driving is one of the primary causes of driving fatalities. Electroencephalography (EEG), a method for detecting drowsiness directly from brain activity, has been widely used for detecting driver drowsiness in real-time. Recent studies have revealed the great potential of using brain connectivity graphs constructed based on EEG data for drowsy state predictions. However, traditional brain connectivity networks are irrelevant to the downstream prediction tasks. This article proposes a connectivity-aware graph neural network (CAGNN) using a self-attention mechanism that can generate task-relevant connectivity networks via end-to-end training. Our method achieved an accuracy of 72.6% and outperformed other convolutional neural networks (CNNs) and graph generation methods based on a drowsy driving dataset. In addition, we introduced a squeeze-and-excitation (SE) block to capture important features and demonstrated that the SE attention score can reveal the most important feature band. We compared our generated connectivity graphs in the drowsy and alert states and found drowsiness connectivity patterns, including significantly reduced occipital connectivity and interregional connectivity. Additionally, we performed a post hoc interpretability analysis and found that our method could identify drowsiness features such as alpha spindles. Our code is available online at https://github.com/ALEX95GOGO/CAGNN.
昏昏欲睡的驾驶是导致驾驶死亡的主要原因之一。脑电图(EEG)是一种直接从大脑活动中检测困倦的方法,已广泛用于实时检测驾驶员困倦。最近的研究表明,使用基于 EEG 数据构建的脑连接图来预测困倦状态具有很大的潜力。然而,传统的脑连接网络与下游预测任务无关。本文提出了一种使用自注意力机制的连接感知图神经网络(CAGNN),它可以通过端到端训练生成与任务相关的连接网络。我们的方法在昏昏欲睡的驾驶数据集上的准确率达到了 72.6%,优于其他卷积神经网络(CNN)和基于图生成的方法。此外,我们引入了挤压-激励(SE)模块来捕捉重要特征,并证明 SE 注意力得分可以揭示最重要的特征频段。我们比较了在昏昏欲睡和警觉状态下生成的连接图,发现了困倦的连接模式,包括枕部连接和区域间连接明显减少。此外,我们进行了事后可解释性分析,发现我们的方法可以识别出像阿尔法纺锤波这样的困倦特征。我们的代码可在 https://github.com/ALEX95GOGO/CAGNN 上获得。