Suppr超能文献

最大化导电金属有机框架的潜力。

Maximizing the Potential of Electrically Conductive MOFs.

作者信息

Pham Hoai T B, Choi Ji Yong, Stodolka Michael, Park Jihye

机构信息

Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.

Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States.

出版信息

Acc Chem Res. 2024 Jan 31. doi: 10.1021/acs.accounts.3c00718.

Abstract

ConspectusElectrically conductive metal-organic frameworks (EC-MOFs) have emerged as a compelling class of materials, drawing increasing attention due to their unique properties facilitating charge transport within porous structures. The synergy between electrical conductivity and porosity has opened a wide range of applications, including electrocatalysis, energy storage, chemiresistive sensing, and electronic devices that have been underexplored for their insulating counterparts. Despite these promising prospects, a prevalent challenge arises from the predominant adoption of two-dimensional (2D) structures by most EC-MOFs. These 2D frameworks often show modest surface areas and short interlayer distances, hindering molecular accessibility, which deviates from the inherent characteristics of conventional MOFs. Furthermore, the quest for efficient charge transport imposes design constraints, leading to a restricted selection of functional building blocks. Additionally, there is a lack of established functionalization methods within EC-MOFs, limiting their functional diversity. Thus, these challenges have impeded EC-MOFs from reaching their full potential.In this Account, we summarize and discuss our group's efforts aimed at enhancing molecular accessibility and deploying the functional diversity of EC-MOFs. Our focus on enhancing molecular accessibility involves several strategies. First, we employed macrocyclic ligands with intrinsic pockets as the building blocks for EC-MOFs. The integrated intrinsic pockets in the frameworks supplement surface areas and additional pores to enhance molecular accessibility. The resulting macrocyclic ligand-based EC-MOFs exhibit exceptionally high surface areas and confer advantages in electrochemical performances. Second, our efforts extend to addressing the structural limitations, frequently associated with EC-MOFs' 2D structures. Through the pillar insertion strategy, we transformed a 2D EC-MOF platform into a three-dimensional (3D) structure, thereby achieving higher porosity and enhanced molecular accessibility. In pursuing functional diversity, we have delved into molecular-level tuning of EC-MOF building blocks. We demonstrated that electron-rich alkyne-based pockets in the macrocyclic ligands can host transition metals and alkali ions, enabling ion selectivity and showcasing diverse use of EC-MOFs. We utilized a postsynthetic approach to further functionalize metal nodes on the molecular level within an EC-MOF framework, introducing a proton-conducting pathway while preserving its electrical conductivity.We aspire for this Account to provide practical insights and strategies to surmount structural and functional diversity limitations in the realm of EC-MOFs. By integrating enhanced molecular accessibility and diverse functionality, our endeavor to propel the utility of these materials will inspire further rational development for future EC-MOFs and unlock their full potential.

摘要

综述

导电金属有机框架材料(EC-MOFs)已成为一类引人注目的材料,因其独特的性质有利于在多孔结构中进行电荷传输而受到越来越多的关注。导电性和孔隙率之间的协同作用开启了广泛的应用,包括电催化、能量存储、化学电阻传感以及电子器件等,而这些应用对于其绝缘性的同类材料来说尚未得到充分探索。尽管前景广阔,但大多数EC-MOFs主要采用二维(2D)结构,这带来了一个普遍的挑战。这些二维框架通常具有适度的表面积和较短的层间距离,阻碍了分子可达性,这与传统MOFs的固有特性不同。此外,对高效电荷传输的追求带来了设计限制,导致功能构建块的选择受限。此外,EC-MOFs中缺乏成熟的功能化方法,限制了它们的功能多样性。因此,这些挑战阻碍了EC-MOFs发挥其全部潜力。

在本综述中,我们总结并讨论了我们团队为提高分子可达性和拓展EC-MOFs功能多样性所做的努力。我们提高分子可达性的重点涉及多种策略。首先,我们采用具有固有口袋的大环配体作为EC-MOFs的构建块。框架中整合的固有口袋增加了表面积和额外的孔隙,以提高分子可达性。由此产生的基于大环配体的EC-MOFs表现出极高的表面积,并在电化学性能方面具有优势。其次,我们的努力延伸到解决与EC-MOFs二维结构经常相关的结构限制。通过支柱插入策略,我们将二维EC-MOF平台转变为三维(3D)结构,从而实现了更高的孔隙率和增强的分子可达性。在追求功能多样性方面,我们深入研究了EC-MOF构建块的分子水平调控。我们证明了大环配体中富含电子的炔基口袋可以容纳过渡金属和碱金属离子,实现离子选择性并展示了EC-MOFs的多种用途。我们利用后合成方法在EC-MOF框架内对金属节点进行进一步的分子水平功能化,引入质子传导途径同时保持其导电性。

我们希望本综述能提供实用的见解和策略,以克服EC-MOFs领域中的结构和功能多样性限制。通过整合增强的分子可达性和多样的功能,我们推动这些材料实用性的努力将激发未来EC-MOFs的进一步合理开发,并释放它们的全部潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验