State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.
Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan.
Nat Protoc. 2024 Jan;19(1):207-239. doi: 10.1038/s41596-023-00906-8. Epub 2023 Nov 27.
Bacteria often function as a community, called the microbiota, consisting of many different bacterial species. The accurate identification of bacterial types and the simultaneous quantification of the cells of each bacterial type will advance our understanding of microbiota; however, this cannot be performed by conventional 16S rRNA sequencing methods as they only identify and quantify genes, which do not always represent cells. Here, we present a protocol for our developed method, barcoding bacteria for identification and quantification (BarBIQ). In BarBIQ, the 16S rRNA genes of single bacterial cells are amplified and attached to a unique cellular barcode in a droplet. Sequencing the tandemly linked cellular barcodes and 16S rRNA genes from many droplets (representing many cells with unique cellular barcodes) and clustering the sequences using the barcodes determines both the bacterial type for each cell based on 16S rRNA gene and the number of cells for each bacterial type based on the quantity of barcode types sequenced. Single-base accuracy for 16S rRNA sequencing is achieved via the barcodes and by avoiding chimera formation from 16S rRNA genes of different bacteria using droplets. For data processing, an easy-to-use bioinformatic pipeline is available ( https://github.com/Shiroguchi-Lab/BarBIQ_Pipeline_V1_2_0 ). This protocol allows researchers with experience in molecular biology but without bioinformatics experience to perform the process in ~2 weeks. We show the application of BarBIQ in mouse gut microbiota analysis as an example; however, this method is also applicable to other microbiota samples, including those from the mouth and skin, marine environments, soil and plants, as well as those from other terrestrial environments.
细菌通常作为一个群落发挥作用,称为微生物群落,由许多不同的细菌物种组成。准确识别细菌类型并同时定量每种细菌类型的细胞将有助于我们深入了解微生物群;然而,这不能通过传统的 16S rRNA 测序方法来实现,因为它们只能识别和定量基因,而这些基因并不总是代表细胞。在这里,我们介绍了我们开发的方法——用于鉴定和定量的细菌条形码(BarBIQ)的协议。在 BarBIQ 中,单个细菌细胞的 16S rRNA 基因被扩增并连接到一个独特的细胞条形码上。对许多液滴(代表具有独特细胞条形码的许多细胞)中的串联连接的细胞条形码和 16S rRNA 基因进行测序,并使用条形码对序列进行聚类,根据 16S rRNA 基因确定每个细胞的细菌类型,根据测序的条形码类型的数量确定每种细菌类型的细胞数量。条形码的使用以及通过液滴避免来自不同细菌的 16S rRNA 基因的嵌合体形成,实现了 16S rRNA 测序的单碱基准确性。为了进行数据处理,我们提供了一个易于使用的生物信息学管道(https://github.com/Shiroguchi-Lab/BarBIQ_Pipeline_V1_2_0)。该协议允许具有分子生物学经验但没有生物信息学经验的研究人员在大约 2 周内完成该过程。我们以小鼠肠道微生物组分析为例展示了 BarBIQ 的应用;然而,该方法也适用于其他微生物组样本,包括口腔和皮肤、海洋环境、土壤和植物以及其他陆地环境中的样本。