Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China.
Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
ACS Appl Mater Interfaces. 2023 Dec 6;15(48):55258-55275. doi: 10.1021/acsami.3c10733. Epub 2023 Nov 28.
In recent studies, iron-containing Fenton nanocatalysts have demonstrated significant promise for clinical use due to their effective antitumor activity and low cytotoxicity. A new approach was reported in this work utilizing cation exchange synthesis to fabricate FeMnO nanoparticles (NPs) that boost Fenton reactions and responses to the tumor microenvironment (TME) for chemodynamic therapy (CDT) and chemotherapy (CT). Within the TME, the redox metal pair of Fe/Mn helps break down endogenous hydrogen peroxide (HO) into very harmful hydroxyl radicals (•OH) while simultaneously deactivating glutathione (GSH) to boost CDT performance. To further enhance the therapeutic potential, FeMnO NPs were encapsulated with thioketal-linked camptothecin (CPT-TK-COOH), a reactive oxygen species (ROS)-responsive prodrug, achieving a high CPT-loading capacity of up to 51.1%. Upon ROS generation through the Fenton reaction, the prodrug TK linkage was disrupted, releasing 80% of the CPT payload within 48 h. Notably, FeMnO@CPT exhibited excellent dual-modal imaging capabilities, enabling magnetic resonance and fluorescence imaging for image-guided therapy. In vitro studies showed the cytocompatibility of FeMnO NPs using MDA-Mb-231 and 4T1 cells, but in the presence of HO, they induced significant cytotoxicity, resulting in 80% cell death through CDT and CT effects. Upon intravenous administration, FeMnO@CPT displayed remarkable tumor accumulation, which enhanced tumor suppression in xenografts through improved CDT and CT effects. Moreover, no significant adverse effects were observed in the FeMnO NP-treated animals. In the current study, the FeMnO@CPT anticancer platform, with its boosted •OH-producing capability and ROS-cleavable drug release, has been validated utilizing in vitro and animal studies, suggesting its capacity as a viable strategy for clinical trials.
在最近的研究中,含铁的芬顿纳米催化剂由于其有效的抗肿瘤活性和低细胞毒性,显示出在临床应用中的巨大潜力。本工作采用阳离子交换合成法制备 FeMnO 纳米颗粒(NPs),报道了一种新方法,该方法可增强芬顿反应,并对肿瘤微环境(TME)产生响应,用于化学动力学治疗(CDT)和化学疗法(CT)。在 TME 中,Fe/Mn 氧化还原金属对有助于将内源性过氧化氢(HO)分解为非常有害的羟基自由基(•OH),同时使谷胱甘肽(GSH)失活,以增强 CDT 性能。为了进一步提高治疗潜力,将 FeMnO NPs 用硫代缩酮连接的喜树碱(CPT-TK-COOH)包封,这是一种活性氧(ROS)响应的前药,达到高达 51.1%的高 CPT 负载能力。通过 Fenton 反应产生 ROS 时,前药 TK 键断裂,在 48 小时内释放出 80%的 CPT 有效载荷。值得注意的是,FeMnO@CPT 表现出优异的双模成像能力,能够进行磁共振和荧光成像以进行图像引导治疗。体外研究表明,FeMnO NPs 对 MDA-Mb-231 和 4T1 细胞具有细胞相容性,但在 HO 存在下,它们会引起明显的细胞毒性,通过 CDT 和 CT 作用导致 80%的细胞死亡。静脉注射后,FeMnO@CPT 显示出显著的肿瘤积累,通过改善 CDT 和 CT 作用,增强了异种移植中的肿瘤抑制作用。此外,在 FeMnO NP 处理的动物中未观察到明显的不良反应。在本研究中,通过体外和动物研究验证了具有增强的•OH 产生能力和 ROS 可切割药物释放的 FeMnO@CPT 抗癌平台,表明其具有作为临床试验可行策略的潜力。