Suppr超能文献

用于癫痫手术后脑切除磁共振成像分割的新型用户友好型应用程序。

Novel User-Friendly Application for MRI Segmentation of Brain Resection following Epilepsy Surgery.

作者信息

Billardello Roberto, Ntolkeras Georgios, Chericoni Assia, Madsen Joseph R, Papadelis Christos, Pearl Phillip L, Grant Patricia Ellen, Taffoni Fabrizio, Tamilia Eleonora

机构信息

Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.

Advanced Robotics and Human-Centered Technologies-CREO Lab, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

出版信息

Diagnostics (Basel). 2022 Apr 18;12(4):1017. doi: 10.3390/diagnostics12041017.

Abstract

Delineation of resected brain cavities on magnetic resonance images (MRIs) of epilepsy surgery patients is essential for neuroimaging/neurophysiology studies investigating biomarkers of the epileptogenic zone. The gold standard to delineate the resection on MRI remains manual slice-by-slice tracing by experts. Here, we proposed and validated a semiautomated MRI segmentation pipeline, generating an accurate model of the resection and its anatomical labeling, and developed a graphical user interface (GUI) for user-friendly usage. We retrieved pre- and postoperative MRIs from 35 patients who had focal epilepsy surgery, implemented a region-growing algorithm to delineate the resection on postoperative MRIs and tested its performance while varying different tuning parameters. Similarity between our output and hand-drawn gold standards was evaluated via dice similarity coefficient (DSC; range: 0-1). Additionally, the best segmentation pipeline was trained to provide an automated anatomical report of the resection (based on presurgical brain atlas). We found that the best-performing set of parameters presented DSC of 0.83 (0.72-0.85), high robustness to seed-selection variability and anatomical accuracy of 90% to the clinical postoperative MRI report. We presented a novel user-friendly open-source GUI that implements a semiautomated segmentation pipeline specifically optimized to generate resection models and their anatomical reports from epilepsy surgery patients, while minimizing user interaction.

摘要

在癫痫手术患者的磁共振成像(MRI)上描绘切除的脑腔,对于研究致痫区生物标志物的神经影像学/神经生理学研究至关重要。在MRI上描绘切除范围的金标准仍然是专家逐片手动追踪。在此,我们提出并验证了一种半自动MRI分割流程,生成切除范围及其解剖标记的准确模型,并开发了一个图形用户界面(GUI)以便于用户使用。我们从35例接受局灶性癫痫手术的患者中获取术前和术后MRI,实施区域生长算法在术后MRI上描绘切除范围,并在改变不同调整参数时测试其性能。通过骰子相似系数(DSC;范围:0 - 1)评估我们的输出与手绘金标准之间的相似性。此外,对最佳分割流程进行训练以提供切除范围的自动解剖报告(基于术前脑图谱)。我们发现,性能最佳的参数集的DSC为0.83(0.72 - 0.85),对种子选择变异性具有高鲁棒性,并且与临床术后MRI报告的解剖学准确性为90%。我们展示了一个新颖的用户友好型开源GUI,它实现了一种半自动分割流程,该流程经过专门优化,可从癫痫手术患者生成切除模型及其解剖报告,同时尽量减少用户交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e2/9032020/69f422f81b65/diagnostics-12-01017-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验