Weinstein Sarah M, Vandekar Simon N, Alexander-Bloch Aaron F, Raznahan Armin, Li Mingyao, Gur Raquel E, Gur Ruben C, Roalf David R, Park Min Tae M, Chakravarty Mallar, Baller Erica B, Linn Kristin A, Satterthwaite Theodore D, Shinohara Russell T
Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA.
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
bioRxiv. 2023 Nov 13:2023.11.10.566593. doi: 10.1101/2023.11.10.566593.
Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about the spatial structure of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genomics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose Network Enrichment Significance Testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study phenotype associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.
功能网络常常引导我们对脑表型关联的空间图谱进行解读。然而,在感兴趣的网络内评估关联富集的方法在科学严谨性和基本假设方面存在差异。虽然一些方法依赖主观解读,但其他方法对成像数据的空间结构做出了不切实际的假设,导致假阳性率虚高。我们试图通过借鉴基因组学研究中广泛使用的一种方法的见解来填补现有方法学中的这一空白,该方法用于测试一组基因与感兴趣的表型之间关联的富集情况。我们提出了网络富集显著性检验(NEST),这是一个灵活的框架,用于测试脑表型关联对功能网络或大脑其他子区域的特异性。我们应用NEST来研究来自大规模神经发育队列研究的脑结构和功能成像数据与表型的关联。