Suppr超能文献

改善个性化治疗决策:一种使用混合类型结果开发治疗效益指数的贝叶斯多变量层次模型

Improving Individualized Treatment Decisions: A Bayesian Multivariate Hierarchical Model for Developing a Treatment Benefit Index using Mixed Types of Outcomes.

作者信息

Wu Danni, Goldfeld Keith S, Petkova Eva, Park Hyung G

机构信息

Department of Population Health, New York University Grossman School of Medicine, 180 Madison Avenue, New York, 10016, New York, USA.

出版信息

medRxiv. 2024 Jan 7:2023.11.17.23298711. doi: 10.1101/2023.11.17.23298711.

Abstract

BACKGROUND

Precision medicine has led to the development of targeted treatment strategies tailored to individual patients based on their characteristics and disease manifestations. Although precision medicine often focuses on a single health outcome for individualized treatment decision rules (ITRs), relying only on a single outcome rather than all available outcomes information leads to suboptimal data usage when developing optimal ITRs.

METHODS

To address this limitation, we propose a Bayesian multivariate hierarchical model that leverages the wealth of correlated health outcomes collected in clinical trials. The approach jointly models mixed types of correlated outcomes, facilitating the "borrowing of information" across the multivariate outcomes, and results in a more accurate estimation of heterogeneous treatment effects compared to using single regression models for each outcome. We develop a treatment benefit index, which quantifies the relative treatment benefit of the experimental treatment over the control treatment, based on the proposed multivariate outcome model.

RESULTS

We demonstrate the strengths of the proposed approach through extensive simulations and an application to an international Coronavirus Disease 2019 (COVID-19) treatment trial. Simulation results indicate that the proposed method reduces the occurrence of erroneous treatment decisions compared to a single regression model for a single health outcome. Additionally, the sensitivity analysis demonstrates the robustness of the model across various study scenarios. Application of the method to the COVID-19 trial exhibits improvements in estimating the individual-level treatment efficacy (indicated by narrower credible intervals for odds ratios) and optimal ITRs.

CONCLUSION

The study jointly models mixed types of outcomes in the context of developing ITRs. By considering multiple health outcomes, the proposed approach can advance the development of more effective and reliable personalized treatment.

摘要

背景

精准医学促使了根据个体患者的特征和疾病表现制定个性化治疗策略的发展。尽管精准医学在制定个体化治疗决策规则(ITRs)时通常侧重于单一健康结局,但仅依赖单一结局而非所有可用结局信息会导致在制定最优ITRs时数据使用不充分。

方法

为解决这一局限性,我们提出了一种贝叶斯多变量分层模型,该模型利用临床试验中收集的大量相关健康结局数据。该方法对混合类型的相关结局进行联合建模,促进了多变量结局之间的“信息借用”,与对每个结局使用单一回归模型相比,能更准确地估计异质性治疗效果。我们基于所提出的多变量结局模型开发了一种治疗获益指数,该指数量化了实验性治疗相对于对照治疗的相对治疗获益。

结果

我们通过广泛的模拟以及在一项国际新型冠状病毒肺炎(COVID-19)治疗试验中的应用,展示了所提出方法的优势。模拟结果表明,与针对单一健康结局的单一回归模型相比,所提出的方法减少了错误治疗决策的发生。此外,敏感性分析表明该模型在各种研究场景下具有稳健性。将该方法应用于COVID-19试验在估计个体水平的治疗疗效(以优势比的可信区间更窄表示)和最优ITRs方面有改进。

结论

本研究在制定ITRs的背景下对混合类型的结局进行联合建模。通过考虑多个健康结局,所提出的方法可以推动更有效、更可靠的个性化治疗的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecbb/10786573/67d812fecab3/nihpp-2023.11.17.23298711v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验