Cheng Jay Jojo, Huling Jared D, Chen Guanhua
Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison.
Division of Biostatistics, University of Minnesota.
Proc Mach Learn Res. 2022;193:171-198. Epub 2022 Nov 28.
Medical treatments tailored to a patient's baseline characteristics hold the potential of improving patient outcomes while reducing negative side effects. Learning individualized treatment rules (ITRs) often requires aggregation of multiple datasets(sites); however, current ITR methodology does not take between-site heterogeneity into account, which can hurt model generalizability when deploying back to each site. To address this problem, we develop a method for individual-level meta-analysis of ITRs, which jointly learns site-specific ITRs while borrowing information about feature sign-coherency via a scientifically-motivated directionality principle. We also develop an adaptive procedure for model tuning, using information criteria tailored to the ITR learning problem. We study the proposed methods through numerical experiments to understand their performance under different levels of between-site heterogeneity and apply the methodology to estimate ITRs in a large multi-center database of electronic health records. This work extends several popular methodologies for estimating ITRs (A-learning, weighted learning) to the multiple-sites setting.
根据患者基线特征量身定制的医学治疗方法,有望改善患者治疗效果,同时减少负面副作用。学习个体化治疗规则(ITR)通常需要聚合多个数据集(站点);然而,当前的ITR方法并未考虑站点间的异质性,这在将模型部署回每个站点时可能会损害模型的通用性。为了解决这个问题,我们开发了一种用于ITR个体水平荟萃分析的方法,该方法通过一个具有科学依据的方向性原则,在借用有关特征符号一致性信息的同时,联合学习特定于站点的ITR。我们还开发了一种用于模型调整的自适应程序,使用针对ITR学习问题量身定制的信息准则。我们通过数值实验研究了所提出的方法,以了解它们在不同站点间异质性水平下的性能,并将该方法应用于一个大型多中心电子健康记录数据库中估计ITR。这项工作将几种流行的估计ITR的方法(A学习、加权学习)扩展到了多站点设置。