Suppr超能文献

通过符号一致性对个体化治疗规则进行荟萃分析。

Meta-analysis of individualized treatment rules via sign-coherency.

作者信息

Cheng Jay Jojo, Huling Jared D, Chen Guanhua

机构信息

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison.

Division of Biostatistics, University of Minnesota.

出版信息

Proc Mach Learn Res. 2022;193:171-198. Epub 2022 Nov 28.

Abstract

Medical treatments tailored to a patient's baseline characteristics hold the potential of improving patient outcomes while reducing negative side effects. Learning individualized treatment rules (ITRs) often requires aggregation of multiple datasets(sites); however, current ITR methodology does not take between-site heterogeneity into account, which can hurt model generalizability when deploying back to each site. To address this problem, we develop a method for individual-level meta-analysis of ITRs, which jointly learns site-specific ITRs while borrowing information about feature sign-coherency via a scientifically-motivated directionality principle. We also develop an adaptive procedure for model tuning, using information criteria tailored to the ITR learning problem. We study the proposed methods through numerical experiments to understand their performance under different levels of between-site heterogeneity and apply the methodology to estimate ITRs in a large multi-center database of electronic health records. This work extends several popular methodologies for estimating ITRs (A-learning, weighted learning) to the multiple-sites setting.

摘要

根据患者基线特征量身定制的医学治疗方法,有望改善患者治疗效果,同时减少负面副作用。学习个体化治疗规则(ITR)通常需要聚合多个数据集(站点);然而,当前的ITR方法并未考虑站点间的异质性,这在将模型部署回每个站点时可能会损害模型的通用性。为了解决这个问题,我们开发了一种用于ITR个体水平荟萃分析的方法,该方法通过一个具有科学依据的方向性原则,在借用有关特征符号一致性信息的同时,联合学习特定于站点的ITR。我们还开发了一种用于模型调整的自适应程序,使用针对ITR学习问题量身定制的信息准则。我们通过数值实验研究了所提出的方法,以了解它们在不同站点间异质性水平下的性能,并将该方法应用于一个大型多中心电子健康记录数据库中估计ITR。这项工作将几种流行的估计ITR的方法(A学习、加权学习)扩展到了多站点设置。

相似文献

1
Meta-analysis of individualized treatment rules via sign-coherency.
Proc Mach Learn Res. 2022;193:171-198. Epub 2022 Nov 28.
2
Do machine learning methods lead to similar individualized treatment rules? A comparison study on real data.
Stat Med. 2024 May 20;43(11):2043-2061. doi: 10.1002/sim.10059. Epub 2024 Mar 12.
3
On using electronic health records to improve optimal treatment rules in randomized trials.
Biometrics. 2020 Dec;76(4):1075-1086. doi: 10.1111/biom.13288. Epub 2020 May 14.
4
High-Dimensional Precision Medicine From Patient-Derived Xenografts.
J Am Stat Assoc. 2021;116(535):1140-1154. doi: 10.1080/01621459.2020.1828091. Epub 2020 Nov 12.
5
Multi-Armed Angle-Based Direct Learning for Estimating Optimal Individualized Treatment Rules With Various Outcomes.
J Am Stat Assoc. 2020;115(530):678-691. doi: 10.1080/01621459.2018.1529597. Epub 2019 Apr 11.
6
Learning Personalized Treatment Rules from Electronic Health Records Using Topic Modeling Feature Extraction.
Proc Int Conf Data Sci Adv Anal. 2019 Oct;2019:392-402. doi: 10.1109/dsaa.2019.00054. Epub 2020 Jan 23.
7
Tree-based Ensemble Methods For Individualized Treatment Rules.
Biostat Epidemiol. 2017;2(1):61-83. doi: 10.1080/24709360.2018.1435608. Epub 2018 Mar 28.
9
Estimating individualized treatment rules with risk constraint.
Biometrics. 2020 Dec;76(4):1310-1318. doi: 10.1111/biom.13232. Epub 2020 Feb 18.
10
Multiple domain and multiple kernel outcome-weighted learning for estimating individualized treatment regimes.
J Comput Graph Stat. 2022;31(4):1375-1383. doi: 10.1080/10618600.2022.2067552. Epub 2022 May 19.

本文引用的文献

2
Preserving data privacy when using multi-site data to estimate individualized treatment rules.
Stat Med. 2022 Apr 30;41(9):1627-1643. doi: 10.1002/sim.9318. Epub 2022 Jan 28.
3
Evolving Acceptance and Use of RWE for Regulatory Decision Making on the Benefit/Risk Assessment of a Drug in Japan.
Clin Pharmacol Ther. 2022 Jan;111(1):35-43. doi: 10.1002/cpt.2410. Epub 2021 Sep 18.
4
Multi-Armed Angle-Based Direct Learning for Estimating Optimal Individualized Treatment Rules With Various Outcomes.
J Am Stat Assoc. 2020;115(530):678-691. doi: 10.1080/01621459.2018.1529597. Epub 2019 Apr 11.
5
A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity.
J Am Stat Assoc. 2021;116(533):162-173. doi: 10.1080/01621459.2020.1783272. Epub 2020 Aug 4.
6
Optimal individualized decision rules using instrumental variable methods.
J Am Stat Assoc. 2021;116(533):174-191. doi: 10.1080/01621459.2020.1745814. Epub 2020 May 12.
8
Precision Medicine.
Annu Rev Stat Appl. 2019 Mar;6:263-286. doi: 10.1146/annurev-statistics-030718-105251.
9
Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database.
Intensive Care Med. 2018 Jun;44(6):884-892. doi: 10.1007/s00134-018-5208-7. Epub 2018 May 28.
10
Random Forest Missing Data Algorithms.
Stat Anal Data Min. 2017 Dec;10(6):363-377. doi: 10.1002/sam.11348. Epub 2017 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验