Pan Chun, Cai Bo
Department of Mathematics and Statistics, Hunter College, New York, NY 10065.
Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208.
Commun Stat Simul Comput. 2022;51(12):7513-7525. doi: 10.1080/03610918.2020.1839497. Epub 2020 Nov 2.
Partly interval-censored data often occur in cancer clinical trials and have been analyzed as right-censored data. Patients' geographic information sometimes is also available and can be useful in testing treatment effects and predicting survivorship. We propose a Bayesian semiparametric method for analyzing partly interval-censored data with areal spatial information under the proportional hazards model. A simulation study is conducted to compare the performance of the proposed method with the main method currently available in the literature and the traditional Cox proportional hazards model for right-censored data. The method is illustrated through a leukemia survival data set and a dental health data set. The proposed method will be especially useful for analyzing progression-free survival in multi-regional cancer clinical trials.
部分区间删失数据在癌症临床试验中经常出现,并且已被当作右删失数据进行分析。患者的地理信息有时也可获取,并且在检验治疗效果和预测生存率方面可能有用。我们提出一种贝叶斯半参数方法,用于在比例风险模型下分析带有区域空间信息的部分区间删失数据。进行了一项模拟研究,以比较所提方法与文献中当前可用的主要方法以及针对右删失数据的传统Cox比例风险模型的性能。通过一个白血病生存数据集和一个牙齿健康数据集对该方法进行了说明。所提方法对于分析多区域癌症临床试验中的无进展生存期将特别有用。