IEEE Trans Neural Syst Rehabil Eng. 2023;31:4749-4759. doi: 10.1109/TNSRE.2023.3336865. Epub 2023 Dec 7.
This paper introduces the Long Short-Term Memory with Dual-Stage Attention (LSTM-MSA) model, an approach for analyzing electromyography (EMG) signals. EMG signals are crucial in applications like prosthetic control, rehabilitation, and human-computer interaction, but they come with inherent challenges such as non-stationarity and noise. The LSTM-MSA model addresses these challenges by combining LSTM layers with attention mechanisms to effectively capture relevant signal features and accurately predict intended actions. Notable features of this model include dual-stage attention, end-to-end feature extraction and classification integration, and personalized training. Extensive evaluations across diverse datasets consistently demonstrate the LSTM-MSA's superiority in terms of F1 score, accuracy, recall, and precision. This research provides a model for real-world EMG signal applications, offering improved accuracy, robustness, and adaptability.
本文介绍了长短期记忆与双阶段注意力(LSTM-MSA)模型,这是一种用于分析肌电图(EMG)信号的方法。EMG 信号在假肢控制、康复和人机交互等应用中至关重要,但它们存在非平稳性和噪声等固有挑战。LSTM-MSA 模型通过结合 LSTM 层和注意力机制来应对这些挑战,从而有效地捕获相关信号特征并准确预测预期动作。该模型的显著特点包括双阶段注意力、端到端特征提取和分类集成以及个性化训练。在不同数据集上的广泛评估一致表明,LSTM-MSA 在 F1 得分、准确性、召回率和精度方面具有优越性。这项研究为实际的 EMG 信号应用提供了一个模型,提高了准确性、鲁棒性和适应性。