Department of Haematology, Tan Tock Seng Hospital, Singapore; Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
Blood Rev. 2024 Mar;64:101144. doi: 10.1016/j.blre.2023.101144. Epub 2023 Nov 19.
Artificial intelligence (AI) and its application in classification of blood cells in the peripheral blood film is an evolving field in haematology. We performed a rapid review of the literature on AI and peripheral blood films, evaluating the condition studied, image datasets, machine learning models, training set size, testing set size and accuracy. A total of 283 studies were identified, encompassing 6 broad domains: malaria (n = 95), leukemia (n = 81), leukocytes (n = 72), mixed (n = 25), erythrocytes (n = 15) or Myelodysplastic syndrome (MDS) (n = 1). These publications have demonstrated high self-reported mean accuracy rates across various studies (95.5% for malaria, 96.0% for leukemia, 94.4% for leukocytes, 95.2% for mixed studies and 91.2% for erythrocytes), with an overall mean accuracy of 95.1%. Despite the high accuracy, the challenges toward real world translational usage of these AI trained models include the need for well-validated multicentre data, data standardisation, and studies on less common cell types and non-malarial blood-borne parasites.
人工智能(AI)及其在周围血涂片血细胞分类中的应用是血液学中一个不断发展的领域。我们对 AI 和周围血涂片文献进行了快速回顾,评估了研究条件、图像数据集、机器学习模型、训练集大小、测试集大小和准确性。共确定了 283 项研究,涵盖了 6 个广泛的领域:疟疾(n=95)、白血病(n=81)、白细胞(n=72)、混合(n=25)、红细胞(n=15)或骨髓增生异常综合征(MDS)(n=1)。这些出版物在各种研究中展示了高的自我报告平均准确率(疟疾为 95.5%,白血病为 96.0%,白细胞为 94.4%,混合研究为 95.2%,红细胞为 91.2%),总体平均准确率为 95.1%。尽管准确率很高,但这些经过 AI 训练的模型在实际应用中仍面临一些挑战,包括需要经过充分验证的多中心数据、数据标准化,以及针对较少见的细胞类型和非疟疾血液寄生虫的研究。