Suppr超能文献

边缘人工智能(AI)用于移动显微镜中丝虫病的实时自动定量。

Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.

机构信息

Spotlab, Madrid, Spain.

Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.

出版信息

PLoS Negl Trop Dis. 2024 Apr 17;18(4):e0012117. doi: 10.1371/journal.pntd.0012117. eCollection 2024 Apr.

Abstract

Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.

摘要

丝虫病是一种由圆线虫引起的被忽视的热带病,在许多热带国家都是一个重大的公共卫生问题。通过对血液样本进行显微镜检查可以检测和区分寄生虫种类,但这种方法既费时又需要专家显微镜检查师,而这种资源并不总是能得到。在这种情况下,人工智能(AI)可以通过自动检测和区分微丝蚴来协助诊断这种疾病。根据世界卫生组织定义的淋巴丝虫病目标产品概况,我们开发了一种运行在智能手机上的边缘人工智能系统,该系统的摄像头与光学显微镜的目镜对齐,可以实时检测和区分寄生虫种类,而无需连接互联网。我们的目标检测算法使用单镜头检测(SSD)MobileNet V2 检测模型,该模型在临床验证前经过了 115 例、85 例共 1903 个视野和 3342 个标签的模型训练,以及 30 例共 484 个视野和 873 个标签的模型验证,可以在 10 倍放大倍数下检测微丝蚴,并在 40 倍放大倍数下区分出四种:罗阿罗阿丝虫、曼氏丝虫、班氏丝虫和马来丝虫。我们在临床环境中通过复制包括在 AI 模型协助下进行 10 倍和 40 倍检查的诊断工作流程,验证了我们增强显微镜系统的有效性,共对 18 个样本进行了检查,其中 AI 在一款中端智能手机上运行。该系统的筛查算法总体精度为 94.14%,召回率为 91.90%,F1 得分为 93.01%;而物种分化算法的总体精度为 95.46%,召回率为 97.81%,F1 得分为 96.62%。这个创新的解决方案有潜力支持丝虫病的诊断和监测,特别是在资源有限的环境中,那里缺乏专家技术人员和实验室设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c67c/11057975/e48770392482/pntd.0012117.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验