Suppr超能文献

一种用于预测水污染的新型射频-完全集成经验模态分解-长短期记忆网络模型。

A novel RF-CEEMD-LSTM model for predicting water pollution.

作者信息

Ruan Jinlou, Cui Yang, Song Yuchen, Mao Yawei

机构信息

Henan Provincial Communications Planning and Design Institute Co., Ltd, Zhengzhou, 450000, People's Republic of China.

出版信息

Sci Rep. 2023 Nov 28;13(1):20901. doi: 10.1038/s41598-023-48409-6.

Abstract

Accurate water pollution prediction is an important basis for water environment prevention and control. The uncertainty of input variables and the nonstationary and nonlinear characteristics of water pollution series hinder the accuracy and reliability of water pollution prediction. This study proposed a novel water pollution prediction model (RF-CEEMD-LSTM) to improve the performance of water pollution prediction by combining advantages of the random forest (RF) and Long short-term memory (LSTM) models and Complementary ensemble empirical mode decomposition (CEEMD). The experimental results based on measured data show that the proposed RF-CEEMD-LSTM model can accurately predict water pollution trends, with a mean ab-solute percentage error (MAPE) of less than 8%. The RMSE of the RF-CEEMD-LSTM model is reduced by 62.6%, 39.9%, and 15.5% compared to those of the LSTM, RF-LSTM, and CEEMD-LSTM models, respectively, proving that the proposed method has good advantages in predicting non-linear and nonstationary water pollution sequences. The driving force analysis results showed that TN has the most significant impact on water pollution prediction. The research results could provide references for identifying and explaining water pollution variables and improving water pollution prediction method.

摘要

准确的水污染预测是水环境防治的重要依据。输入变量的不确定性以及水污染序列的非平稳和非线性特征,阻碍了水污染预测的准确性和可靠性。本研究提出了一种新型水污染预测模型(RF-CEEMD-LSTM),通过结合随机森林(RF)和长短期记忆(LSTM)模型以及互补集成经验模态分解(CEEMD)的优势,提高水污染预测性能。基于实测数据的实验结果表明,所提出的RF-CEEMD-LSTM模型能够准确预测水污染趋势,平均绝对百分比误差(MAPE)小于8%。与LSTM、RF-LSTM和CEEMD-LSTM模型相比,RF-CEEMD-LSTM模型的均方根误差(RMSE)分别降低了62.6%、39.9%和15.5%,证明所提出的方法在预测非线性和非平稳水污染序列方面具有良好优势。驱动力分析结果表明,总氮(TN)对水污染预测的影响最为显著。研究结果可为识别和解释水污染变量以及改进水污染预测方法提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebc2/10684549/e0bbdd0b8941/41598_2023_48409_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验