Suppr超能文献

腹腔镜下结直肠手术中人工智能辅助的神经和解剖层面识别。

Laparoscopic Colorectal Surgery with Anatomical Recognition with Artificial Intelligence Assistance for Nerves and Dissection Layers.

机构信息

Department of Digestive Surgery, Kawaguchi Municipal Medical Center, Nishiaraijuku, Kawaguchi City, Saitama, Japan.

出版信息

Ann Surg Oncol. 2024 Mar;31(3):1690-1691. doi: 10.1245/s10434-023-14633-7. Epub 2023 Nov 28.

Abstract

BACKGROUND

In digestive tract surgery, dissection of an avascular space consisting of loose connective tissue (LCT) appearing by countertraction improves oncological outcomes and reduces complications. Kumazu et al. described a deep learning approach that automatically segments LCT to help surgeons. During left colorectal surgery, lumbar splanchnic, hypogastric, and pelvic visceral nerve injuries cause sexual dysfunction and/or urinary issues. As nerve preservation is critical for functional preservation, the AI model Kumazu reported is named Eureka (Anaut Inc., Tokyo, Japan) and was developed to separate nerves automatically. The educative efficacy of intraoperative nerve visualization has been described. Artificial intelligence (AI) assisted navigation is expected to aid in the anatomical recognition of nerves and the safe dissection layers surrounding nerves in the future.

METHODS

We used Eureka as an educational tool for surgeons' training during laparoscopic colorectal surgery. The laparoscopic system used was Olympus VISERA ELITE3 (Tokyo, Japan).

RESULTS

Total mesorectal excision (TME) was safely performed with nerve preservation. No postoperative complications occurred. Automatic segmentation and highlighting of LCT in the dissected layers, lumbar splanchnic, hypogastric, and pelvic visceral nerves (S3, S4), were performed in real time.

CONCLUSIONS

In colorectal cancer surgery, the nerves are vital anatomical structures serving as landmarks for dissection. Lumbar splanchnic, hypogastric, and pelvic visceral nerve injuries (S3, S4) cause sexual dysfunction or urinary disorders. Nerve preservation is important for functional preservation. AI-assisted navigation methods are noninvasive, user-friendly, and expected to improve in accuracy in the future. They have the potential to develop nerve-guided TME.

摘要

背景

在消化道手术中,通过对由疏松结缔组织(LCT)组成的无血管空间进行反牵引解剖,可以改善肿瘤学结果并减少并发症。Kumazu 等人描述了一种深度学习方法,可以自动分割 LCT 以帮助外科医生。在左结直肠手术中,腰内脏、腹下和骨盆内脏神经损伤会导致性功能障碍和/或尿失禁问题。由于神经保护对于功能保护至关重要,因此报告的 Kumazu AI 模型被命名为 Eureka(Anaut Inc.,东京,日本),旨在自动分离神经。术中神经可视化的教育效果已被描述。预计人工智能(AI)辅助导航将有助于未来识别神经的解剖结构和安全分离神经周围的解剖层。

方法

我们将 Eureka 用作腹腔镜结直肠手术中外科医生培训的教育工具。使用的腹腔镜系统是 Olympus VISERA ELITE3(日本东京)。

结果

安全地进行了全直肠系膜切除术(TME)并保留了神经。没有发生术后并发症。在实时自动分割和突出显示解剖层、腰内脏、腹下和骨盆内脏神经(S3、S4)中的 LCT。

结论

在结直肠癌手术中,神经是至关重要的解剖结构,是解剖的标志。腰内脏、腹下和骨盆内脏神经损伤(S3、S4)会导致性功能障碍或尿失禁。神经保护对于功能保护很重要。AI 辅助导航方法是非侵入性的、用户友好的,预计未来的准确性会提高。它们有可能开发出神经引导的 TME。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验