Suppr超能文献

全球卫生公平中的人工智能:关于ChatGPT在中国国家医师资格考试中应用的评估与讨论

Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination.

作者信息

Tong Wenting, Guan Yongfu, Chen Jinping, Huang Xixuan, Zhong Yuting, Zhang Changrong, Zhang Hui

机构信息

Department of Pharmacy, Gannan Healthcare Vocational College, Ganzhou, Jiangxi, China.

Department of Rehabilitation and Elderly Care, Gannan Healthcare Vocational College, Ganzhou, Jiangxi, China.

出版信息

Front Med (Lausanne). 2023 Oct 19;10:1237432. doi: 10.3389/fmed.2023.1237432. eCollection 2023.

Abstract

BACKGROUND

The demand for healthcare is increasing globally, with notable disparities in access to resources, especially in Asia, Africa, and Latin America. The rapid development of Artificial Intelligence (AI) technologies, such as OpenAI's ChatGPT, has shown promise in revolutionizing healthcare. However, potential challenges, including the need for specialized medical training, privacy concerns, and language bias, require attention.

METHODS

To assess the applicability and limitations of ChatGPT in Chinese and English settings, we designed an experiment evaluating its performance in the 2022 National Medical Licensing Examination (NMLE) in China. For a standardized evaluation, we used the comprehensive written part of the NMLE, translated into English by a bilingual expert. All questions were input into ChatGPT, which provided answers and reasons for choosing them. Responses were evaluated for "information quality" using the Likert scale.

RESULTS

ChatGPT demonstrated a correct response rate of 81.25% for Chinese and 86.25% for English questions. Logistic regression analysis showed that neither the difficulty nor the subject matter of the questions was a significant factor in AI errors. The Brier Scores, indicating predictive accuracy, were 0.19 for Chinese and 0.14 for English, indicating good predictive performance. The average quality score for English responses was excellent (4.43 point), slightly higher than for Chinese (4.34 point).

CONCLUSION

While AI language models like ChatGPT show promise for global healthcare, language bias is a key challenge. Ensuring that such technologies are robustly trained and sensitive to multiple languages and cultures is vital. Further research into AI's role in healthcare, particularly in areas with limited resources, is warranted.

摘要

背景

全球对医疗保健的需求正在增加,在获取资源方面存在显著差异,尤其是在亚洲、非洲和拉丁美洲。人工智能(AI)技术的迅速发展,如OpenAI的ChatGPT,已显示出在变革医疗保健方面的潜力。然而,包括需要专业医学培训、隐私问题和语言偏见在内的潜在挑战需要关注。

方法

为了评估ChatGPT在中文和英文环境中的适用性和局限性,我们设计了一项实验,评估其在中国2022年国家医师资格考试(NMLE)中的表现。为了进行标准化评估,我们使用了NMLE的综合笔试部分,并由一位双语专家将其翻译成英文。所有问题都输入到ChatGPT中,它提供了答案及选择这些答案的理由。使用李克特量表对回答的“信息质量”进行评估。

结果

ChatGPT对中文问题的正确回答率为81.25%,对英文问题的正确回答率为86.25%。逻辑回归分析表明,问题的难度和主题都不是导致人工智能出错的重要因素。表明预测准确性的布里尔分数,中文为0.19,英文为0.14,表明预测性能良好。英文回答的平均质量得分优秀(4.43分),略高于中文回答(4.34分)。

结论

虽然像ChatGPT这样的人工智能语言模型在全球医疗保健方面显示出潜力,但语言偏见是一个关键挑战。确保此类技术经过充分训练并对多种语言和文化敏感至关重要。有必要进一步研究人工智能在医疗保健中的作用,特别是在资源有限的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1991/10656681/bc9714575fe4/fmed-10-1237432-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验