Suppr超能文献

笼状分子简约模型可及拓扑结构的系统探索。

Systematic exploration of accessible topologies of cage molecules minimalistic models.

作者信息

Tarzia Andrew, Wolpert Emma H, Jelfs Kim E, Pavan Giovanni M

机构信息

Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus Wood Lane London W12 0BZ UK.

出版信息

Chem Sci. 2023 Oct 11;14(44):12506-12517. doi: 10.1039/d3sc03991a. eCollection 2023 Nov 15.

Abstract

Cages are macrocyclic structures with an intrinsic internal cavity that support applications in separations, sensing and catalysis. These materials can be synthesised self-assembly of organic or metal-organic building blocks. Their bottom-up synthesis and the diversity in building block chemistry allows for fine-tuning of their shape and properties towards a target property. However, it is not straightforward to predict the outcome of self-assembly, and, thus, the structures that are practically accessible during synthesis. Indeed, such a prediction becomes more difficult as problems related to the flexibility of the building blocks or increased combinatorics lead to a higher level of complexity and increased computational costs. Molecular models, and their coarse-graining into simplified representations, may be very useful to this end. Here, we develop a minimalistic toy model of cage-like molecules to explore the stable space of different cage topologies based on a few fundamental geometric building block parameters. Our results capture, despite the simplifications of the model, known geometrical design rules in synthetic cage molecules and uncover the role of building block coordination number and flexibility on the stability of cage topologies. This leads to a large-scale and systematic exploration of design principles, generating data that we expect could be analysed through expandable approaches towards the rational design of self-assembled porous architectures.

摘要

笼状结构是具有固有内部空腔的大环结构,可用于分离、传感和催化等应用。这些材料可以通过有机或金属有机结构单元的自组装来合成。它们的自下而上合成以及结构单元化学的多样性使得可以针对目标性质对其形状和性质进行微调。然而,预测自组装的结果以及合成过程中实际可获得的结构并非易事。实际上,由于与结构单元的灵活性或组合复杂性增加相关的问题导致更高的复杂性和计算成本,这种预测变得更加困难。分子模型及其简化为简化表示形式在这方面可能非常有用。在这里,我们开发了一个笼状分子的简约玩具模型,以基于一些基本的几何结构单元参数探索不同笼状拓扑结构的稳定空间。尽管模型进行了简化,但我们的结果捕捉到了合成笼状分子中已知的几何设计规则,并揭示了结构单元配位数和灵活性对笼状拓扑结构稳定性的作用。这导致了对设计原则的大规模系统探索,生成了我们预期可通过可扩展方法进行分析的数据,以实现自组装多孔结构的合理设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0258/10646940/03f46e36af8a/d3sc03991a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验