Suppr超能文献

通过化学气相沉积绕过氧化物中间体的形成以合成具有改进的氧还原反应活性的Mn-N-C催化剂。

Bypassing Formation of Oxide Intermediate via Chemical Vapor Deposition for the Synthesis of an Mn-N-C Catalyst with Improved ORR Activity.

作者信息

Stracensky Thomas, Jiao Li, Sun Qiang, Liu Ershuai, Yang Fan, Zhong Sichen, Cullen David A, Myers Deborah J, Kropf A Jeremy, Jia Qingying, Mukerjee Sanjeev, Xu Hui

机构信息

Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States.

Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.

出版信息

ACS Catal. 2023 Nov 1;13(22):14782-14791. doi: 10.1021/acscatal.3c01982. eCollection 2023 Nov 17.

Abstract

A significant barrier to the commercialization of proton exchange membrane fuel cells (PEMFCs) is the high cost of the platinum-based oxygen reduction reaction (ORR) cathode electrocatalysts. One viable solution is to replace platinum with a platinum-group metal (PGM) free catalyst with comparable activity and durability. However, PGM-free catalyst development is burdened by a lack of understanding of the active site formation mechanism during the requisite high-temperature synthesis step, thus making rational catalyst design challenging. Herein we demonstrate in-temperature X-ray absorption spectroscopy (XAS) to unravel the mechanism of site evolution during pyrolysis for a manganese-based catalyst. We show the transformation from an initial state of manganese oxides (MnO) at room temperature, to the emergence of manganese-nitrogen (MnN) site beginning at 750 °C, with its continued evolution up to the maximum temperature of 1000 °C. The competition between the MnO and MnN is identified as the primary factor governing the formation of MnN sites during pyrolysis. This knowledge led us to use a chemical vapor deposition (CVD) method to produce MnN sites to bypass the evolution route involving the MnO intermediates. The Mn-N-C catalyst synthesized via CVD shows improved ORR activity over the Mn-N-C synthesized via traditional synthesis by the pyrolysis of a mixture of Mn, N, and C precursors.

摘要

质子交换膜燃料电池(PEMFC)商业化的一个重大障碍是基于铂的氧还原反应(ORR)阴极电催化剂成本高昂。一个可行的解决方案是用具有可比活性和耐久性的无铂族金属(PGM)催化剂替代铂。然而,由于在必要的高温合成步骤中缺乏对活性位点形成机制的了解,无PGM催化剂的开发面临重重困难,这使得合理的催化剂设计具有挑战性。在此,我们展示了原位X射线吸收光谱(XAS),以揭示锰基催化剂热解过程中位点演变的机制。我们展示了从室温下的初始氧化锰(MnO)状态,到750℃开始出现锰氮(MnN)位点,并持续演变至最高温度1000℃的过程。MnO和MnN之间的竞争被确定为热解过程中控制MnN位点形成的主要因素。这一认识促使我们使用化学气相沉积(CVD)方法来生成MnN位点,以绕过涉及MnO中间体的演变路径。通过CVD合成的Mn-N-C催化剂比通过传统热解Mn、N和C前驱体混合物合成的Mn-N-C催化剂表现出更高的ORR活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64f7/10660335/3d7eaf94b8a6/cs3c01982_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验