Suppr超能文献

不同受众如何与一款健康应用上的用户情绪表达相关联。

How Differing Audiences Were Associated with User Emotional Expression on a Well-Being App.

作者信息

Topitzer Maya, Kou Yueming, Kasumba Robert, Kreniske Philip

机构信息

Columbia University Mailman School of Public Health, Department of Biostatistics.

Washington University in St. Louis, International Center for Child Health and Development McKelvey School of Engineering.

出版信息

Hum Behav Emerg Technol. 2022;2022. doi: 10.1155/2022/4453980. Epub 2022 Jul 27.

Abstract

In the last five years there has been an explosion of mobile apps that aim to impact emotional well-being, yet limited research has examined the ways that users interact, and specifically write to develop a therapeutic alliance within these apps. Writing is a developmental practice in which a narrator transforms amorphous thoughts and emotions into expressions, and according to narrative theory, the linguistic characteristics of writing can be understood as a physical manifestation of a narrator's affect. Informed by literacy theorists who have argued convincingly that narrators address different audiences in different ways, we used IBM Watson's Natural Language Processing software (IBM Watson NLP) to examine how users' expression of emotion on a well-being app differed depending on the audience. Our findings demonstrate that audience was strongly associated with the way users' expressed emotions in writing. When writing to an explicit audience users wrote longer narratives, with less sadness, less anger, less disgust, less fear and more joy. These findings have direct relevance for researchers and well-being app design.

摘要

在过去五年中,旨在影响情绪健康的移动应用程序呈爆发式增长,但针对用户互动方式,特别是在这些应用程序中如何通过写作建立治疗联盟的研究却很有限。写作是一种发展性实践,叙述者将无定形的思想和情感转化为表达形式,根据叙事理论,写作的语言特征可被理解为叙述者情感的一种外在表现。受令人信服地主张叙述者以不同方式面向不同受众的读写能力理论家的启发,我们使用IBM沃森自然语言处理软件(IBM Watson NLP)来研究用户在一款健康应用程序上的情感表达如何因受众而异。我们的研究结果表明,受众与用户写作时表达情感的方式密切相关。当写给明确的受众时,用户会写出更长的叙述,悲伤、愤怒、厌恶、恐惧情绪更少,喜悦情绪更多。这些发现对研究人员和健康应用程序设计具有直接意义。

相似文献

1
How Differing Audiences Were Associated with User Emotional Expression on a Well-Being App.
Hum Behav Emerg Technol. 2022;2022. doi: 10.1155/2022/4453980. Epub 2022 Jul 27.
2
User Reviews of Depression App Features: Sentiment Analysis.
JMIR Form Res. 2021 Dec 14;5(12):e17062. doi: 10.2196/17062.
6
Smartphone Users' Persuasion Knowledge in the Context of Consumer mHealth Apps: Qualitative Study.
JMIR Mhealth Uhealth. 2021 Apr 13;9(4):e16518. doi: 10.2196/16518.
7
Dual-Language Testing of Emotional Verbal Fluency: A Closer Look at "Joy," "Sadness," "Fear," "Anger," and "Disgust".
Arch Clin Neuropsychol. 2023 Jan 21;38(1):91-105. doi: 10.1093/arclin/acac054.

本文引用的文献

2
Natural emotion vocabularies as windows on distress and well-being.
Nat Commun. 2020 Sep 10;11(1):4525. doi: 10.1038/s41467-020-18349-0.
3
Validating Automated Sentiment Analysis of Online Cognitive Behavioral Therapy Patient Texts: An Exploratory Study.
Front Psychol. 2019 May 14;10:1065. doi: 10.3389/fpsyg.2019.01065. eCollection 2019.
4
Identification of pharmacodynamic biomarker hypotheses through literature analysis with IBM Watson.
PLoS One. 2019 Apr 8;14(4):e0214619. doi: 10.1371/journal.pone.0214619. eCollection 2019.
5
Chatbots and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape.
Can J Psychiatry. 2019 Jul;64(7):456-464. doi: 10.1177/0706743719828977. Epub 2019 Mar 21.
6
A fully automated conversational agent for promoting mental well-being: A pilot RCT using mixed methods.
Internet Interv. 2017 Oct 10;10:39-46. doi: 10.1016/j.invent.2017.10.002. eCollection 2017 Dec.
7
Psychological, Relational, and Emotional Effects of Self-Disclosure After Conversations With a Chatbot.
J Commun. 2018 Aug;68(4):712-733. doi: 10.1093/joc/jqy026. Epub 2018 May 30.
8
A Path to Better-Quality mHealth Apps.
JMIR Mhealth Uhealth. 2018 Jul 30;6(7):e10414. doi: 10.2196/10414.
10
Advances in mobile mental health: opportunities and implications for the spectrum of e-mental health services.
Mhealth. 2017 Aug 21;3:34. doi: 10.21037/mhealth.2017.06.02. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验