Chen Zhigeng, Bi Sheng, Shan Yi, Cui Bixiao, Yang Hongwei, Qi Zhigang, Zhao Zhilian, Han Ying, Yan Shaozhen, Lu Jie
Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
CNS Neurosci Ther. 2024 Apr;30(4):e14539. doi: 10.1111/cns.14539. Epub 2023 Nov 30.
This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD).
A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including F-fluorodeoxyglucose (F-FDG) PET, 3D arterial spin labeling (ASL), and high-resolution T1-weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad-Score) of logistic regression models were evaluated from 5-fold cross-validation.
The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single-modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad-Score differed significantly between the AD and HC (p < 0.001), aMCI and HC (p < 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests.
Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications.
本研究旨在探讨使用多参数同步正电子发射断层扫描(PET)/磁共振成像(MRI)的海马区放射组学在阿尔茨海默病(AD)早期诊断中的应用价值。
本研究共纳入53名健康对照(HC)参与者、55名遗忘型轻度认知障碍(aMCI)患者和51名AD患者。所有参与者均接受同步PET/MRI扫描,包括F-氟脱氧葡萄糖(F-FDG)PET、三维动脉自旋标记(ASL)和高分辨率T1加权成像(3D T1WI)。从这三种模态图像的海马区提取放射组学特征。分别训练逻辑回归模型对AD与HC、AD与aMCI、aMCI与HC进行分类。通过五折交叉验证评估逻辑回归模型的诊断性能和放射组学评分(Rad-Score)。
海马区放射组学特征显示出良好的诊断性能,在HC、aMCI和AD的二元分类中,多模态分类器优于单模态分类器。使用多模态分类器,我们在区分AD与HC时,受试者操作特征曲线(AUC)下面积为0.98,准确率为96.7%;在区分aMCI与HC时,AUC为0.86,准确率为80.6%。AD与HC组、aMCI与HC组之间的Rad-Score值差异显著(p < 0.001)。决策曲线分析表明,与神经心理学测试相比,多模态分类器具有更好的临床效益。
使用PET/MRI的多参数海马区放射组学有助于早期AD的识别,并可能为临床应用提供潜在的生物标志物。