Suppr超能文献

脑[F]FDG PET/CT的影像组学分析预测淀粉样蛋白PET阳性患者的阿尔茨海默病:关于SPM皮质分割、Pyradiomics和机器学习分析应用的初步报告

Radiomics Analysis of Brain [F]FDG PET/CT to Predict Alzheimer's Disease in Patients with Amyloid PET Positivity: A Preliminary Report on the Application of SPM Cortical Segmentation, Pyradiomics and Machine-Learning Analysis.

作者信息

Alongi Pierpaolo, Laudicella Riccardo, Panasiti Francesco, Stefano Alessandro, Comelli Albert, Giaccone Paolo, Arnone Annachiara, Minutoli Fabio, Quartuccio Natale, Cupidi Chiara, Arnone Gaspare, Piccoli Tommaso, Grimaldi Luigi Maria Edoardo, Baldari Sergio, Russo Giorgio

机构信息

Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90133 Palermo, Italy.

Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Contrada Pietrapollastra Pisciotto, 90015 Cefalù, Italy.

出版信息

Diagnostics (Basel). 2022 Apr 8;12(4):933. doi: 10.3390/diagnostics12040933.

Abstract

BACKGROUND

Early in-vivo diagnosis of Alzheimer's disease (AD) is crucial for accurate management of patients, in particular, to select subjects with mild cognitive impairment (MCI) that may evolve into AD, and to define other types of MCI non-AD patients. The application of artificial intelligence to functional brain [F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography(CT) aiming to increase diagnostic accuracy in the diagnosis of AD is still undetermined. In this field, we propose a radiomics analysis on advanced imaging segmentation method Statistical Parametric Mapping (SPM)-based completed with a Machine-Learning (ML) application to predict the diagnosis of AD, also by comparing the results with following Amyloid-PET and final clinical diagnosis.

METHODS

From July 2016 to September 2017, 43 patients underwent PET/CT scans with FDG and Florbetaben brain PET/CT and at least 24 months of clinical/instrumental follow-up. Patients were retrospectively evaluated by a multidisciplinary team (MDT = Neurologist, Psychologist, Radiologist, Nuclear Medicine Physician, Laboratory Clinic) at the G. Giglio Institute in Cefalù, Italy. Starting from the cerebral segmentations applied by SPM on the main cortical macro-areas of each patient, Pyradiomics was used for the feature extraction process; subsequently, an innovative descriptive-inferential mixed sequential approach and a machine learning algorithm (i.e., discriminant analysis) were used to obtain the best diagnostic performance in prediction of amyloid deposition and the final diagnosis of AD.

RESULTS

A total of 11 radiomics features significantly predictive of cortical beta-amyloid deposition ( = 6) and AD ( = 5) were found. Among them, two higher-order features (original_glcm_Idmn and original_glcm_Id), extracted from the limbic enthorinal cortical area (ROI-1) in the FDG-PET/CT images, predicted the positivity of Amyloid-PET/CT scans with maximum values of sensitivity (SS), specificity (SP), precision (PR) and accuracy (AC) of 84.92%, 75.13%, 73.75%, and 79.56%, respectively. Conversely, for the prediction of the clinical-instrumental final diagnosis of AD, the best performance was obtained by two higher-order features (original_glcm_MCC and original_glcm_Maximum Probability) extracted from ROI-2 (frontal cortex) with a SS, SP, PR and AC of 75.16%, 80.50%, 77.68%, and 78.05%, respectively, and by one higher-order feature (original_glcm_Idmn) extracted from ROI-3 (medial Temporal cortex; SS = 80.88%, SP = 76.85%, PR = 75.63%, AC = 78.76%.

CONCLUSIONS

The results obtained in this preliminary study support advanced segmentation of cortical areas typically involved in early AD on FDG PET/CT brain images, and radiomics analysis for the identification of specific high-order features to predict Amyloid deposition and final diagnosis of AD.

摘要

背景

阿尔茨海默病(AD)的早期体内诊断对于患者的准确管理至关重要,特别是要筛选出可能发展为AD的轻度认知障碍(MCI)患者,并明确其他类型的非AD的MCI患者。将人工智能应用于功能性脑[F]氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)/计算机断层扫描(CT)以提高AD诊断准确性的应用仍未确定。在该领域,我们提出了一种基于高级成像分割方法统计参数映射(SPM)的放射组学分析,并结合机器学习(ML)应用来预测AD的诊断,同时将结果与后续的淀粉样蛋白PET和最终临床诊断进行比较。

方法

2016年7月至2017年9月,43例患者接受了FDG和氟贝他班脑PET/CT的PET/CT扫描,并进行了至少24个月的临床/仪器随访。意大利切法卢的G. Giglio研究所的多学科团队(MDT =神经科医生、心理学家、放射科医生、核医学医生、临床实验室人员)对患者进行了回顾性评估。从SPM应用于每位患者主要皮质大区域的脑部分割开始,使用Pyradiomics进行特征提取过程;随后,采用一种创新的描述性-推断性混合顺序方法和一种机器学习算法(即判别分析),以在预测淀粉样蛋白沉积和AD最终诊断方面获得最佳诊断性能。

结果

共发现11个对皮质β-淀粉样蛋白沉积(= 6)和AD(= 5)有显著预测作用的放射组学特征。其中,从FDG-PET/CT图像中的边缘内嗅皮质区域(ROI-1)提取的两个高阶特征(original_glcm_Idmn和original_glcm_Id)预测淀粉样蛋白PET/CT扫描阳性的敏感性(SS)、特异性(SP)、精度(PR)和准确性(AC)最大值分别为84.92%、75.13%、73.75%和79.56%。相反,对于AD临床仪器最终诊断的预测,从ROI-2(额叶皮质)提取的两个高阶特征(original_glcm_MCC和original_glcm_Maximum Probability)表现最佳,其SS、SP、PR和AC分别为75.16%、80.50%、77.68%和78.05%,从ROI-3(内侧颞叶皮质)提取的一个高阶特征(original_glcm_Idmn)的表现也较好(SS = 80.88%,SP = 76.85%,PR = 75.63%,AC = 78.76%)。

结论

这项初步研究获得的结果支持对FDG PET/CT脑图像上通常参与早期AD的皮质区域进行高级分割,并支持通过放射组学分析识别特定的高阶特征以预测淀粉样蛋白沉积和AD的最终诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b298/9030037/1f1cd77babb6/diagnostics-12-00933-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验