Bisquert Juan
Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain.
J Phys Chem Lett. 2023 Dec 14;14(49):10951-10958. doi: 10.1021/acs.jpclett.3c03062. Epub 2023 Dec 1.
Organic electrochemical transistors (OECTs) are effective devices for neuromorphic applications, bioelectronics, and sensors. Numerous reports in the literature show persistent dynamical hysteresis effects in the current-voltage curves, attributed to the slow ionic charging of the channel under the applied gate voltage. Here we present a model that considers the dominant electrical and electrochemical operation aspects of the device based on a thermodynamic function of ion insertion. We identify the volume capacitance as the derivative of the thermodynamic function, associated with the chemical capacitance of the ionic-electronic film. The dynamical analysis shows that the system contains both capacitive and inductive hysteresis effects. The inductor response, which can be observed in impedance spectroscopy, is associated with ionic diffusion from the surface to fill the channel up to the equilibrium value. The model reveals the multiple dynamical features associated with specific kinetic relaxations that control the transient and impedance response of the OCET.
有机电化学晶体管(OECTs)是用于神经形态应用、生物电子学和传感器的有效器件。文献中的大量报告表明,电流-电压曲线中存在持续的动态滞后效应,这归因于施加栅极电压下沟道的缓慢离子充电。在此,我们基于离子插入的热力学函数提出了一个考虑该器件主要电学和电化学操作方面的模型。我们将体积电容确定为热力学函数的导数,它与离子-电子膜的化学电容相关。动态分析表明,该系统同时包含电容性和电感性滞后效应。在阻抗谱中可以观察到的电感响应与离子从表面扩散以填充沟道直至达到平衡值有关。该模型揭示了与控制OCET瞬态和阻抗响应的特定动力学弛豫相关的多种动态特征。