Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain.
J Phys Chem Lett. 2023 Feb 2;14(4):1014-1021. doi: 10.1021/acs.jpclett.2c03812. Epub 2023 Jan 24.
Hysteresis effects in ionic-electronic devices are a valuable resource for the development of switching memory devices that can be used in information storage and brain-like computation. Halide perovskite devices show frequent hysteresis in current-voltage curves that can be harnessed to build effective memristors. These phenomena can be often described by a set of highly nonlinear differential equations that involve current, voltage, and internal state variables, in the style of the famous Hodgkin-Huxley model that accounts for the initiation and temporal response of action potentials in biological neurons. Here we extend the neuron-style models that lead to chemical inductors by introducing a capacitive coupling in the slow relaxation variable. The extended model is able to explain naturally previous observations concerning the transition from capacitor to inductor in impedance spectroscopy of MAPbBr solar cells and memristors in the dark. The model also generates new types of oscillating systems by the generation of a truly negative capacitance distinct from the usual inductive effect.
离子-电子器件中的滞后效应是开发开关存储器件的宝贵资源,这种器件可用于信息存储和类脑计算。卤化物钙钛矿器件在电流-电压曲线上表现出频繁的滞后现象,可用于构建有效的忆阻器。这些现象通常可以用一组高度非线性微分方程来描述,这些方程涉及电流、电压和内部状态变量,类似于著名的 Hodgkin-Huxley 模型,该模型解释了生物神经元中动作电位的产生和时间响应。在这里,我们通过在慢弛豫变量中引入电容耦合,扩展了导致化学感应器的神经元模型。扩展后的模型能够自然地解释之前关于在 MAPbBr 太阳能电池的阻抗谱中从电容器到感应器的转变以及在黑暗中忆阻器的观察结果。该模型还通过产生与通常的电感效应不同的真正负电容来产生新的振荡系统。