Suppr超能文献

压力依赖性应激松弛在急性呼吸窘迫综合征和健康肺中的研究:基于黏弹性模型的研究。

Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model.

机构信息

Department of Anesthesiology and Critical Care Medicine, University Medical Center, Freiburg, D-79106 Freiburg, Germany.

出版信息

Crit Care. 2009;13(6):R199. doi: 10.1186/cc8203. Epub 2009 Dec 9.

Abstract

INTRODUCTION

Limiting the energy transfer between ventilator and lung is crucial for ventilatory strategy in acute respiratory distress syndrome (ARDS). Part of the energy is transmitted to the viscoelastic tissue components where it is stored or dissipates. In mechanically ventilated patients, viscoelasticity can be investigated by analyzing pulmonary stress relaxation. While stress relaxation processes of the lung have been intensively investigated, non-linear interrelations have not been systematically analyzed, and such analyses have been limited to small volume or pressure ranges. In this study, stress relaxation of mechanically ventilated lungs was investigated, focusing on non-linear dependence on pressure. The range of inspiratory capacity was analyzed up to a plateau pressure of 45 cmH2O.

METHODS

Twenty ARDS patients and eleven patients with normal lungs under mechanical ventilation were included. Rapid flow interruptions were repetitively applied using an automated super-syringe maneuver. Viscoelastic resistance, compliance and time constant were determined by multiple regression analysis using a lumped parameter model. This same viscoelastic model was used to investigate the frequency dependence of the respiratory system's impedance.

RESULTS

The viscoelastic time constant was independent of pressure, and it did not differ between normal and ARDS lungs. In contrast, viscoelastic resistance increased non-linearly with pressure (normal: 8.4 (7.4-11.9) [median (lower - upper quartile)] to 35.2 (25.6-39.5) cmH2O.sec/L; ARDS: 11.9 (9.2-22.1) to 73.5 (56.8-98.7)cmH2O.sec/L), and viscoelastic compliance decreased non-linearly with pressure (normal: 130.1(116.9-151.3) to 37.4(34.7-46.3) mL/cmH2O; ARDS: 125.8(80.0-211.0) to 17.1(13.8-24.7)mL/cmH2O). The pulmonary impedance increased with pressure and decreased with respiratory frequency.

CONCLUSIONS

Viscoelastic compliance and resistance are highly non-linear with respect to pressure and differ considerably between ARDS and normal lungs. None of these characteristics can be observed for the viscoelastic time constant. From our analysis of viscoelastic properties we cautiously conclude that the energy transfer from the respirator to the lung can be reduced by application of low inspiratory plateau pressures and high respiratory frequencies. This we consider to be potentially lung protective.

摘要

简介

在急性呼吸窘迫综合征(ARDS)的通气策略中,限制呼吸机与肺之间的能量传递至关重要。部分能量传递到粘弹性组织成分中,在那里储存或耗散。在机械通气患者中,可以通过分析肺压力松弛来研究粘弹性。虽然已经对肺的压力松弛过程进行了深入研究,但尚未系统地分析非线性相互关系,并且此类分析仅限于小体积或压力范围。在这项研究中,研究了机械通气肺的压力松弛,重点是对压力的非线性依赖性。分析了吸气量范围,直至平台压力达到 45cmH2O。

方法

纳入 20 名 ARDS 患者和 11 名接受机械通气的正常肺患者。使用自动超注射器操作重复进行快速流量中断。使用集总参数模型的多元回归分析确定粘弹性阻力、顺应性和时间常数。使用相同的粘弹性模型研究呼吸系统阻抗的频率依赖性。

结果

粘弹性时间常数与压力无关,在正常肺和 ARDS 肺之间没有差异。相比之下,粘弹性阻力随压力呈非线性增加(正常:8.4(7.4-11.9)[中位数(下四分位数-上四分位数)]至 35.2(25.6-39.5)cmH2O.sec/L;ARDS:11.9(9.2-22.1)至 73.5(56.8-98.7)cmH2O.sec/L),粘弹性顺应性随压力呈非线性下降(正常:130.1(116.9-151.3)至 37.4(34.7-46.3)mL/cmH2O;ARDS:125.8(80.0-211.0)至 17.1(13.8-24.7)mL/cmH2O)。肺阻抗随压力增加而增加,随呼吸频率降低而降低。

结论

粘弹性顺应性和阻力与压力高度非线性相关,在 ARDS 和正常肺之间差异很大。这些特征都不能通过粘弹性时间常数来观察。从我们对粘弹性特性的分析中,我们谨慎地得出结论,通过应用低吸气平台压力和高呼吸频率,可以减少从呼吸机到肺的能量传递。我们认为这可能具有肺保护作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5efd/2811954/71373845f745/cc8203-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验