Suppr超能文献

SMAP-HydroBlocks,一个 30 米分辨率的基于卫星的美国本土土壤湿度数据集。

SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US.

机构信息

Princeton University, Department of Civil and Environmental Engineering, Princeton, NJ, United States.

Duke University, Department of Civil and Environmental Engineering, Durham, NC, United States.

出版信息

Sci Data. 2021 Oct 11;8(1):264. doi: 10.1038/s41597-021-01050-2.

Abstract

Soil moisture plays a key role in controlling land-atmosphere interactions, with implications for water resources, agriculture, climate, and ecosystem dynamics. Although soil moisture varies strongly across the landscape, current monitoring capabilities are limited to coarse-scale satellite retrievals and a few regional in-situ networks. Here, we introduce SMAP-HydroBlocks (SMAP-HB), a high-resolution satellite-based surface soil moisture dataset at an unprecedented 30-m resolution (2015-2019) across the conterminous United States. SMAP-HB was produced by using a scalable cluster-based merging scheme that combines high-resolution land surface modeling, radiative transfer modeling, machine learning, SMAP satellite microwave data, and in-situ observations. We evaluated the resulting dataset over 1,192 observational sites. SMAP-HB performed substantially better than the current state-of-the-art SMAP products, showing a median temporal correlation of 0.73 ± 0.13 and a median Kling-Gupta Efficiency of 0.52 ± 0.20. The largest benefit of SMAP-HB is, however, the high spatial detail and improved representation of the soil moisture spatial variability and spatial accuracy with respect to SMAP products. The SMAP-HB dataset is available via zenodo and at https://waterai.earth/smaphb .

摘要

土壤湿度在控制陆地-大气相互作用方面起着关键作用,对水资源、农业、气候和生态系统动态都有影响。尽管土壤湿度在整个景观中变化很大,但目前的监测能力仅限于粗糙尺度的卫星遥感和一些区域性的实地网络。在这里,我们介绍了 SMAP-HydroBlocks(SMAP-HB),这是一个高分辨率的基于卫星的地表土壤湿度数据集,在 30 米的分辨率下具有前所未有的覆盖范围(2015-2019 年),覆盖了美国大陆全境。SMAP-HB 是通过使用可扩展的基于集群的合并方案生成的,该方案结合了高分辨率陆地表面建模、辐射传输建模、机器学习、SMAP 卫星微波数据和实地观测。我们在 1192 个观测点对生成的数据集进行了评估。SMAP-HB 的表现明显优于当前最先进的 SMAP 产品,表现出 0.73±0.13 的中值时间相关性和 0.52±0.20 的中值 Kling-Gupta 效率。然而,SMAP-HB 的最大优势是高空间细节和对土壤湿度空间变异性和空间精度的改进表示,与 SMAP 产品相比。SMAP-HB 数据集可通过 zenodo 和 https://waterai.earth/smaphb 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c64c/8505542/bb73c7a96c85/41597_2021_1050_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验